OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 11 — Nov. 1, 2005
  • pp: 2498–2509

Spatial phase-shift interferometry—a wavefront analysis technique for three-dimensional topometry

Shay Wolfling, Emmanuel Lanzmann, Moshe Israeli, Nissim Ben-Yosef, and Yoel Arieli  »View Author Affiliations


JOSA A, Vol. 22, Issue 11, pp. 2498-2509 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002498


View Full Text Article

Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new wavefront analysis method, in which certain wavefront manipulations are applied to a spatially defined area in a certain plane along the optical axis. These manipulations replace the reference-beam phase shifting of existing methods, making this method a spatial phase-shift interferometry method. We demonstrate the system’s dependence on a defined spatial Airy number, which is the ratio of the characteristic dimension of the manipulated area and the Airy disk diameter of the optical system. We analytically obtain the resulting intensity data of the optical setup and develop various methods to accurately reconstruct the inspected wavefront out of the data. These reconstructions largely involve global techniques, in which the entire wavefront’s pattern affects the reconstruction of the wavefront in any given position. The method’s noise sensitivity is analyzed, and actual reconstruction results are presented.

© 2005 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Instrumentation, Measurement, and Metrology

Citation
Shay Wolfling, Emmanuel Lanzmann, Moshe Israeli, Nissim Ben-Yosef, and Yoel Arieli, "Spatial phase-shift interferometry—a wavefront analysis technique for three-dimensional topometry," J. Opt. Soc. Am. A 22, 2498-2509 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-11-2498


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. C. Woods and A. H. Greenaway, “Wave-front sensing by use of a Green’s function solution to the intensity transport equation,” J. Opt. Soc. Am. A  20, 508–512 (2003).
  2. E. Lopez-Lago and R. de-la-Fuente, “Wavefront sensing by diffracted beam interferometry,” J. Opt. A, Pure Appl. Opt.  4, 299–302 (2002).
  3. M. A. Vorontsov, E. W. Justh, and L. A. Beresnev, “Adaptive optics with advanced phase-contrast techniques. I. High-resolution wave-front sensing,” J. Opt. Soc. Am. A  18, 1289–1299 (2001).
  4. J. H. Burning, D. R. Herriot, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces,” Appl. Opt.  13, 2693–2703 (1974).
  5. K. Creath, “Phase measurements interferometry techniques,” in Progress in Optics, E.Wolf, ed. (Elsevier Science, 1988), Vol.  26, pp. 349–393.
  6. D. W. Phillion, “General methods for generating phase-shifting interferometry algorithms,” Appl. Opt.  36, 8098–8115 (1997).
  7. F. Zernike, “Diffraction theory of knife-edge test and its improved form, the phase-contrast,” Mon. Not. R. Astron. Soc.  94, 371 (1934).
  8. M. Pluta, “Stray-light problem in phase contrast microscopy or toward highly sensitive phase contrast devices: a review,” Opt. Eng. (Bellingham)  32, 3199–3214 (1993).
  9. C. S. Anderson, “Fringe visibility, irradiance, and accuracy in common path interferometers for visualization of phase disturbances,” Appl. Opt.  34, 7474–7485 (1995).
  10. T. Noda and S. Kawata, “Separation of phase and absorption images in phase-contrast microscopy,” J. Opt. Soc. Am. A  9, 924–931 (1992).
  11. R. Liang, J. K. Erwin, and M. Mansuripur, “Variation on Zernike’s phase-contrast microscope,” Appl. Opt.  39, 2152–2158 (2000).
  12. H. Kadono, M. Ogusu, and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun.  110, 391–400 (1994).
  13. C. R. Mercer and K. Creath, “Liquid-crystal point-diffraction interferometer,” Opt. Lett.  19, 916–918 (1994).
  14. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt.  43, 289–293 (1996).
  15. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A  9, 1072–1085 (1992).
  16. S. Wolfling, N. Ben-Yosef, and Y. Arieli, “A generalized method for wavefront analysis,” Opt. Lett.  29, 462–464 (2004).
  17. S. Wolfling, D. Banitt, N. Ben-Yosef, and Y. Arieli, “Innovative metrology method for the 3D measurement of MEMS structures,” in Proc. SPIE  5343, 255–263 (2004).
  18. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett.  3, 27–29 (1978).
  19. A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Vol.  37 of Texts in Applied Mathematics (Springer-Verlag, 2000).
  20. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins U. Press, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited