OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 11 — Nov. 1, 2005
  • pp: 2527–2531

On the wavefront spacing of focused, radially polarized beams

Taco D. Visser and John T. Foley  »View Author Affiliations


JOSA A, Vol. 22, Issue 11, pp. 2527-2531 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002527


View Full Text Article

Acrobat PDF (112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the phase behavior of strongly focused, radially polarized electromagnetic fields. It is shown that, under certain circumstances, the spacing between successive wavefronts can be either greater or smaller than that of a plane wave of the same frequency. Also, this spacing can be significantly larger than that which is predicted for a linearly polarized field that is focused by the same system.

© 2005 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(140.3300) Lasers and laser optics : Laser beam shaping
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Citation
Taco D. Visser and John T. Foley, "On the wavefront spacing of focused, radially polarized beams," J. Opt. Soc. Am. A 22, 2527-2531 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-11-2527


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution,” Opt. Lett.  19, 427–429 (1994).
  2. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett.  21, 9–11 (1996).
  3. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.  179, 1–7 (2000).
  4. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B  72, 109–113 (2001).
  5. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.  91, 233901 (2003). [CrossRef]
  6. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.  86, 5251–5254 (2001).
  7. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt.  43, 4322–4327 (2004).
  8. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express  12, 3377–3382 (2004). http://www.opticsexpress.org.
  9. E. H. Linfoot and E. Wolf, “Phase distribution near focus in an aberration-free diffraction image,” Proc. Phys. Soc. London, Sect. B ,  69, 823–832 (1956).
  10. J. T. Foley and E. Wolf, “Wave-front spacing in the focal region of high-numerical-aperture systems,” Opt. Lett.  30, 1312–1314 (2005).
  11. K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” in Proc. SPIE  3919, 75–85 (2000).
  12. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.  77, 3322–3324 (2000).
  13. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988). See especially Section 14.8.
  14. J. J. Stamnes, Waves in Focal Region (Hilger, 1986). See especially Chap. 16.
  15. B. Richards and E. Wolf, “The Airy pattern in systems of high angular aperture,” Proc. Phys. Soc. London, Sect. B  69, 854–856 (1956).
  16. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A  253, 349–357 (1959).
  17. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A  253, 358–379 (1959).
  18. A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev.  138, B1561–B1565 (1965).
  19. A. Boivin, J. Dow, and E. Wolf, “Energy flow in the neighborhood of the focus of a coherent beam,” J. Opt. Soc. Am.  57, 1171–1175 (1967).
  20. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express  7, 77–87 (2000). http://www.opticsexpress.org.
  21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge U. Press, Cambridge, UK, 1999). See especially Sec. 4.5.1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited