OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 11 — Nov. 1, 2005
  • pp: 2542–2546

Vector propagation of radially polarized Gaussian beams diffracted by an axicon

Yaoju Zhang, Ling Wang, and Chongwei Zheng  »View Author Affiliations


JOSA A, Vol. 22, Issue 11, pp. 2542-2546 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002542


View Full Text Article

Acrobat PDF (309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On the basis of the vectorial Rayleigh diffraction integrals and stationary-phase method, the analytic expression describing the vectorial field distribution of radially polarized Gaussian beams diffracted by an axicon is derived. The theoretical analysis and simulation calculation show that the radial component of the diffraction field is the propagation-invariant first-order Bessel beam when the radially polarized Gaussian beam illuminates the axicon. However, the longitudinal component possesses no such behavior because of its intrinsic r dependence, and its central intensity is the maximum. The longitudinal component is related to the open angle and index of the axicon, which has to be considered when the open angle and index are large. For a small open angle and index, the longitudinal component can be neglected, and the scalar approximation is valid.

© 2005 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Citation
Yaoju Zhang, Ling Wang, and Chongwei Zheng, "Vector propagation of radially polarized Gaussian beams diffracted by an axicon," J. Opt. Soc. Am. A 22, 2542-2546 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-11-2542


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am.  44, 592–597 (1954).
  2. P. A. Bélanger and M. Rioux, “Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam,” Appl. Opt.  17, 1080–1086 (1978).
  3. G. Indebetouw, “Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning,” J. Mod. Opt.  49, 1479–1500 (2002).
  4. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A  8, 932–942 (1991).
  5. I. Manek, Y. B. Ovchinnikov, and R. Grimm, “Generation of a hollow laser beam for atom trapping using an axicon,” Opt. Commun.  147, 67–70 (1998).
  6. Y. Song, D. Milan, I. I. I. Hill, and W. T. Long, “Narrow all-light atom guide,” Opt. Lett.  24, 1805–1807 (1999).
  7. H. Metcalf and P. Straaten, “Cooling and trapping of neutral atoms,” Phys. Rep.  244, 203–286 (1994).
  8. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A  66, 063402 (2002). [CrossRef]
  9. K. A. Ameur and F. Sanchez, “Gaussian beam conversion using an axicon,” J. Mod. Opt.  46, 1537–1548 (1999).
  10. C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun.  124, 121–130 (1996).
  11. M. de Angelis, L. Cacciapuoti, G. Pierattini, and G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng.  39, 283–291 (2003).
  12. B. Dépret, P. Verkerk, and D. Hennequin, “Characteriza-tion and modeling of the hollow beam produced by a real conical lens,” Opt. Commun.  211, 31–38 (2002).
  13. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A  6, 1748–1754 (1989).
  14. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun.  177, 297–301 (2000).
  15. V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre–Gaussian beams by axicon,” Opt. Commun.  184, 105–112 (2000).
  16. J. Arlt, R. Kuhn, and K. Dholakia, “Spatial transformation of Laguerre–Gaussian laser modes,” J. Mod. Opt.  48, 783–787 (2001).
  17. M. Lei and B. Yao, “Characteristics of beam profile of Gaussian beam passing through an axicon,” Opt. Commun.  239, 367–372 (2004).
  18. A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun.  202, 17–20 (2002).
  19. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966).
  20. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A  12, 325–332 (1995).
  21. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  22. J. Lloydb, K. Wanga, A. Barkana, and D. M. Mittleman, “Characterization of apparent superluminal effects in the focus of an axicon lens using terahertz time-domain spectroscopy,” Opt. Commun.  219, 289–294 (2003).
  23. C. Altucci, R. Bruzzese, C. de Lisio, A. Porzio, S. Solimeno, and V. Tosa, “Diffractionless beams and their use for harmonic generation,” Opt. Lasers Eng.  37, 565–575 (2002).
  24. N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited