OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 12 — Dec. 1, 2005
  • pp: 2598–2605

Effect of wavelength on in vivo images of the human cone mosaic

Stacey S. Choi, Nathan Doble, Julianna Lin, Julian Christou, and David R. Williams  »View Author Affiliations


JOSA A, Vol. 22, Issue 12, pp. 2598-2605 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002598


View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In images of the human fundus, the fraction of the total returning light that comes from the choroidal layers behind the retina increases with wavelength [ Appl. Opt. 28, 1061 (1989); Vision Res. 36, 2229 (1996) ]. There is also evidence that light originating behind the receptors is not coupled into the receptor waveguides en route to the pupil [S. A. Burns et al., Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), p. a1; Invest. Ophthalmol. Visual Sci. 38, 1657 (1997) ]. These observations imply that the contrast of images of the cone mosaic should be greatly reduced with increasing wavelength. This hypothesis was tested by imaging the light distributions in both the planes of the photoreceptors and the pupil at three wavelengths, 550, 650, and 750 nm , with the Rochester adaptive optics ophthalmoscope. Surprisingly, the contrast of the retinal images varied only slightly with wavelength. Furthermore, the ratio of the receptorally guided component to the total reflected light measured in the pupil plane was found to be similar at each wavelength, suggesting that, throughout this wavelength range, the scattered light from the deeper layers in the retina is guided through the receptors on its return path to the pupil.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5370) Vision, color, and visual optics : Physiological optics
(330.6130) Vision, color, and visual optics : Spatial resolution
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision and color

History
Original Manuscript: November 19, 2004
Revised Manuscript: March 25, 2005
Manuscript Accepted: April 21, 2005
Published: December 1, 2005

Virtual Issues
Vol. 1, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Stacey S. Choi, Julian Christou, David R. Williams, Nathan Doble, and Julianna Lin, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-12-2598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986). [CrossRef] [PubMed]
  2. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989). [CrossRef] [PubMed]
  3. J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996). [CrossRef] [PubMed]
  4. N. P. A. Zagers, J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002). [CrossRef] [PubMed]
  5. A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996). [CrossRef] [PubMed]
  6. A. E. Elsner, J. J. Weiter, G. Staurenghi, S. A. Burns, K. J. Wald, S. Wolf, S. M. Buzney, “Use of infrared imaging in interpreting indocyanine green angiography,” Invest. Ophthalmol. Visual Sci. 34, 1135 (1993).
  7. S. Wolf, K. J. Wald, A. E. Elsner, G. Staurenghi, “Indocyanine green choroidal videoangiography—a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera,” Retina 13, 266–269 (1993). [CrossRef]
  8. K. J. Wald, A. E. Elsner, S. Wolf, G. Staurenghi, J. J. Weiter, “Indocyanine green videoangiography for the imaging of choroidal neovascularization associated with macular degeneration,” Int. Ophthalmol. Clin. 34, 311–325 (1994). [CrossRef] [PubMed]
  9. G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in-vivo ,” Vision Res. 26, 495–500 (1986). [CrossRef]
  10. S. A. Burns, S. Wu, F. C. Delori, A. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995). [CrossRef]
  11. P. M. Prieto, J. S. McLellan, S. A. Burns, “Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence,” Vision Res. 45, 1957–1965 (2005). [CrossRef] [PubMed]
  12. S. A. Burns, J. C. He, F. C. Delori, S. Marcos, “Do the cones see light scattered from the deep retinal layers?” in Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), pp. a1–a4.
  13. S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999). [CrossRef]
  14. J. M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995). [CrossRef] [PubMed]
  15. A. M. Laties, J. M. Enoch, “An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors,” Invest. Ophthalmol. 10, 69–77 (1971). [PubMed]
  16. A. Roorda, D. R. Williams, “Optical properties of individual human cones,” J. Vision 2, 404–412 (2002). [CrossRef]
  17. S. A. Burns, F. C. Delori, J. C. He, “Back-illuminating the cones: Is the light from the RPE guided?” Invest. Ophthalmol. Visual Sci. 38, 57, Part 1 (1997).
  18. F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, S. A. Burns, “Foveal lipofuscin and macular pigment,” Invest. Ophthalmol. Visual Sci. 38, 1657, Part 1 (1997).
  19. G. S. Brindley, W. A. H. Rushton, “The color of monochromatic light when passed into the human retina from behind,” J. Physiol. (London) 147, 204–208 (1959).
  20. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  21. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–642 (2001). [CrossRef] [PubMed]
  22. M. Hollins, M. Alpern, “Dark adaptation and visual pigment regeneration in human cones,” J. Gen. Physiol. 62, 430–447 (1973). [CrossRef] [PubMed]
  23. S. A. Burns, S. Wu, J. C. He, A. E. Elsner, “Variation in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997). [CrossRef]
  24. A. Pallikaris, D. R. Williams, H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Visual Sci. 44, 4580–4592 (2003). [CrossRef]
  25. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002). [PubMed]
  26. J. C. Christou, A. Roorda, D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401 (2004). [CrossRef]
  27. J. C. Christou, D. Bonaccini, N. Ageorges, F. Marchis, “Myopic deconvolution of adaptive optics images,” ESO Messenger 97, 14–22 (1999).
  28. S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993). [CrossRef]
  29. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in living human eye,” Vision Res. 36, 1067–1079 (1996). [CrossRef] [PubMed]
  30. C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990). [CrossRef] [PubMed]
  31. J. M. Enoch, F. L. Tobey, Vertebrate Photoreceptor Optics (Springer-Verlag, 1981). [CrossRef]
  32. J. M. Enoch, “Visualization of waveguide modes in retinal receptors,” Am. J. Ophthalmol. 51, 1107/235–1118/246 (1961).
  33. S. Marcos, S. A. Burns, J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012–2022 (1998). [CrossRef]
  34. N. P. A. Zagers, D. van Norren, “Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors,” J. Opt. Soc. Am. A 21, 2257–2268 (2004). [CrossRef]
  35. J. Carroll, Center for Visual Science, University of Rochester, New York 14627 (personal communication, 2005).
  36. G. Walls, “The vertebrate eye and its adaptive radiation,” Bull. Cranbrook. Inst. Sci. 19, 785 (1942).
  37. R. A. Weale, “The spectral reflectivity of the cat’s tapetum measured in situ ,” J. Physiol. (London) 119, 30–42 (1953).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited