OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 12 — Dec. 1, 2005
  • pp: 2662–2667

Talbot effect of a grating with different kinds of flaws

Yunqing Lu, Changhe Zhou, and Hongxin Luo  »View Author Affiliations

JOSA A, Vol. 22, Issue 12, pp. 2662-2667 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (539 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Talbot effect of a grating with different kinds of flaws is analyzed with the finite-difference time-domain (FDTD) method. The FDTD method can show the exact near-field distribution of different flaws in a high-density grating, which is impossible to obtain with the conventional Fourier transform method. The numerical results indicate that if a grating is perfect, its Talbot imaging should also be perfect; if the grating is distorted, its Talbot imaging will also be distorted. Furthermore, we evaluate high-density gratings by detecting the near-field distribution with the scanning near-field optical microscopy technique. Experimental results are also given.

© 2005 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Fourier Optics and Optical Signal Processing

Original Manuscript: January 18, 2005
Revised Manuscript: April 29, 2005
Manuscript Accepted: May 26, 2005
Published: December 1, 2005

Yunqing Lu, Changhe Zhou, and Hongxin Luo, "Talbot effect of a grating with different kinds of flaws," J. Opt. Soc. Am. A 22, 2662-2667 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H.F. Talbot, “Facts relating to optical sciences. No. IV,” Philos. Mag. 9, 401–407 (1836).
  2. C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. A 21, 1170–1177 (2004). [CrossRef]
  3. A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik (Stuttgart) 79, 41–45 (1988).
  4. A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990). [CrossRef] [PubMed]
  5. S. Nowak, C. Kurtsiefer, T. Pfau, C. David, “High-order Talbot fringes for atomic matter waves,” Opt. Lett. 22, 1430–1432 (1997). [CrossRef]
  6. C. Zhou, S. Stankovic, C. Denz, T. Tschudi, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999). [CrossRef]
  7. M. V. Berry, S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996). [CrossRef]
  8. J. R. Leger, G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett. 15, 288–290 (1990). [CrossRef] [PubMed]
  9. C. Zhou, L. Wang, T. Tschudi, “Solutions and analyses of fractional-Talbot array illuminations,” Opt. Commun. 147, 224–228 (1998). [CrossRef]
  10. C. Zhou, S. Stankovic, T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38, 284–290 (1999). [CrossRef]
  11. C. Zhou, H. Wang, S. Zhao, P. Xi, L. Liu, “Number of phase levels of a Talbot array illuminator,” Appl. Opt. 40, 607–613 (2001). [CrossRef]
  12. C. Zhou, W. Wang, E. Dai, L. Liu, “Simple principles of the Talbot effect,” Opt. Photonics News, Dec. 2004, pp. 46–50.
  13. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  14. A. Taflove, S. Hagness, Computational Electromagnetics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).
  15. S. Sun, C. T.M. Choi, “A new subgridding scheme for two-dimensional FDTD and FDTD (2,4) methods,” IEEE Trans. Magn. 40, 1041–1044 (2004). [CrossRef]
  16. J. B. Cole, “High-accuracy FDTD solution of the absorbing wave equation, and conducting Maxwell’s equations based on a nonstandard finite-difference model,” IEEE Trans. Antennas Propag. 52, 725–729 (2004). [CrossRef]
  17. J. W. Wallance, M. A. Jensen, “Analysis of optical waveguide structures by use of a combined finite-difference/finite-difference time-domain method,” J. Opt. Soc. Am. A 19, 610–619 (2002). [CrossRef]
  18. E. Miyai, M. Okano, M. Mochizuki, S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002). [CrossRef]
  19. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004). [CrossRef] [PubMed]
  20. P. Wei, H. Chou, Y. Chen, “Subwavelength focusing in the near field in mesoscale air–dielectric structures,” Opt. Lett. 29, 433–435 (2004). [CrossRef] [PubMed]
  21. H. Ichikawa, “Electromagnetic analysis of diffraction gratings by the finite-difference time-domain method,” J. Opt. Soc. Am. A 15, 152–157 (1998). [CrossRef]
  22. H. Ichikawa, “Analysis of femtosecond-order optical pulses diffracted by periodic structure,” J. Opt. Soc. Am. A 16, 299–304 (1999). [CrossRef]
  23. J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995). [CrossRef]
  24. H. Dammann, G. Groh, M. Kock, “Restoration of faulty image of periodic objects by means of self-imaging,” Appl. Opt. 10, 1454–1455 (1971). [CrossRef] [PubMed]
  25. I. I. Smolyaninov, C. C. Davis, “Apparent superresolution in near-field optical imaging of periodic gratings,” Opt. Lett. 23, 1346–1347 (1998). [CrossRef]
  26. H. Luo, C. Zhou, H. Zou, Y. Lu, “Talbot–SNOM method for non-contact evaluation of high-density gratings,” Opt. Commun. 248, 97–103 (2005). [CrossRef]
  27. S. Wang, C. Zhou, H. Ru, Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429–4434 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited