OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 12 — Dec. 1, 2005
  • pp: 2719–2729

Tip–tilt reconstruction with a single dim natural guide star in multiconjugate adaptive optics with laser guide stars

Bruno Femenía  »View Author Affiliations


JOSA A, Vol. 22, Issue 12, pp. 2719-2729 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002719


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A solution to the problem of detecting the tip–tilt modes in multiconjugate adaptive optics (MCAO) with laser guide stars (LGS) is presented. This solution requires the presence of only a single relatively dim natural guide star (NGS) within the reconstructed field of view (FoV). The dim NGS is used for the reconstruction of the tip–tilt modes on the entire FoV, while the tomographic reconstruction of second-order and higher-order modes is made possible by having an LGS constellation with LGSs at different heights. Due to the relatively low brightness required for the tip–tilt NGS and the large corrected FoV (as compared with the case of conventional adaptive optics) the presented solution provides a means to achieve near-diffraction-limited performance of a 10 - m -class telescope in the near infrared over a large portion of the sky. Sky coverage calculations assuming median seeing conditions indicate that this technique could be applied to 75% (95%) of the sky, achieving corrections with an average Strehl ratio 0.42 ( 0.33 ) in the 2.2 μ m K band across the 1.5 reconstructed FoV.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7060) Atmospheric and oceanic optics : Turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Atmospheric Optics

History
Original Manuscript: December 23, 2004
Revised Manuscript: April 13, 2005
Manuscript Accepted: May 10, 2005
Published: December 1, 2005

Citation
Bruno Femenía, "Tip–tilt reconstruction with a single dim natural guide star in multiconjugate adaptive optics with laser guide stars," J. Opt. Soc. Am. A 22, 2719-2729 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-12-2719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  2. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics Vol. XIX, E. Wolf, ed. (Elsevier, 1981), Chap. 5, pp. 281–376. [CrossRef]
  3. D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes,” J. Opt. Soc. Am. A 11, 925–945 (1994). [CrossRef]
  4. R. Foy, A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).
  5. M. Tallon, R. Foy, “Adaptive telescope with laser probe—Isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).
  6. F. Rigaut, E. Gendron, “Laser guide star in adaptive optics—The tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).
  7. R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975). [CrossRef]
  8. J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of the ESO Conference on Very Large Telescopes and Their Instrumentation, (European Southern Observatory, Garching, Germany, 1988) pp. 693–703.
  9. R. Ragazzoni, J. Farinato, E. Marchetti, “Adaptive optics for 100-m-class telescopes: new challenges require new solutions,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1076–1087 (2000).
  10. G. N. Lawrence, W. W. Chow, “Wave-front tomography by Zernike polynomial decomposition,” Opt. Lett. 9, 267–269 (1984). [CrossRef] [PubMed]
  11. R. Ragazzoni, E. Marchetti, F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).
  12. R. Ragazzoni, E. Marchetti, G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403, 54–56 (2000). [CrossRef] [PubMed]
  13. F. Rigaut, B. L. Ellerbroek, R. Flicker, “Principles, limitations and performance of multi-conjugate adaptive optics,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1022–1031 (2000).
  14. M. Le Louarn, M. Tallon, “3D mapping of turbulence: theory,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1066–1073 (2000).
  15. G. Brusa, A. Riccardi, S. Esposito, B. Femenía, M. Carbillet, “Multiconjugate AO system for 8-m class telescopes,” in Laser Weapons Technology, T. D. Steiner and P. H. Merritt, eds., Proc. SPIE4034, 190–200 (2000).
  16. B. L. Ellerbroek, F. Rigaut, “Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2539–2547 (2001). [CrossRef]
  17. B. Femenía, M. Carbillet, A. Riccardi, S. Esposito, G. Brusa, “Numerical simulations of MCAO modal systems in open-loop and closed-loop operation,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE4494, 132–143 (2001).
  18. B. Femenía, N. Devaney, “Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system,” Astron. Astrophys. 404, 1165–1176 (2003). [CrossRef]
  19. T. Fusco, J.-M. Conan, V. Michau, L. Mugnier, G. Rousset, “Phase estimation for large field of view: application to multiconjugate adaptive optics,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann and L. R. Bissonnette, eds., Proc. SPIE3763, 125–133 (1999).
  20. R. Flicker, F. Rigaut, B. Ellerbroek, “Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini-South 8-m telescope,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 1032–1043 (2000).
  21. T. Fusco, J. Conan, G. Rousset, L. M. Mugnier, V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001). [CrossRef]
  22. B. Femenía, G. Brusa, L. Calero, “Analytical prescription for the Zernike projection matrix in modal tomography,” in preparation (2005).
  23. M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, L. Fini, “Simulation of astronomical adaptive optics systems. I. The software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263 (2005). [CrossRef]
  24. J. J. Fuensalida, B. M. García-Lorenzo, J. Castro, S. Chueca, J. M. Delgado, J. M. González-Rodríguez, C. K. Hoegemann, M. Reyes, M. Verde, J. Vernin, “Statistics of atmospheric parameters for multiconjugated adaptive optics for the Observatorio del Roque de los Muchachos,” in Remote Sensing of Clouds and the Atmosphere IX, K. P. Schäfer, A. Comerón, M. R. Carleer, R. H. Picard, and N. I. Sifakis, eds., Proc. SPIE5572, 1–9 (2004).
  25. G. A. Tyler, D. L. Fried, “Image-position error associated with a quadrant detector,” J. Opt. Soc. Am. 72, 804–808 (1982). [CrossRef]
  26. M. P. Cagigal, V. F. Canales, “Generalized Fried parameter after adaptive optics partial wave-front compensation,” J. Opt. Soc. Am. A 17, 903–910 (2000). [CrossRef]
  27. N. Devaney, D. Bello, B. Femenía, J. Castro, A. Villegas López, M. Reyes, J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” in Advancements in Adaptive Optics, D. Bonaccini Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE5490, 913–923 (2004).
  28. H. Takami, N. Takato, Y. Hayano, M. Iye, S. Oya, Y. Kamata, T. Kanzawa, Y. Minowa, M. Otsubo, K. Nakashima, W. Gaessler, D. Saint-Jacques, “Performance of Subaru Cassegrain adaptive optics system,” Publ. Astron. Soc. Jpn. 56, 225–234 (2004).
  29. C. A. Bleau, “Price quotation for a Marconi CCD50 camera,” SciMeasure Analytical Systems Inc., 1123 Zonolite Road, Atlanta, Georgia, 30306 (personal communication, 2003).
  30. M. Carbillet, Laboratoire Universitaire d’Astrophysique de Nice, France (personal communication, 2004).
  31. R. R. Parenti, R. J. Sasiela, “Laser-guide-star systems for astronomical applications,” J. Opt. Soc. Am. A 11, 288–309 (1994). [CrossRef]
  32. F. Shi, “Sodium laser guide star experiment with a sum–frequency laser for adaptive optics,” Publ. Astron. Soc. Pac. 113, 366–378 (2001). [CrossRef]
  33. L. A. Thompson, S. W. Teare, “Rayleigh laser guide star systems: application to the University of Illinois Seeing Improvement System,” Publ. Astron. Soc. Pac. 114, 1029–1042 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited