OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 12 — Dec. 1, 2005
  • pp: 2730–2736

Simulation of topographic images and artifacts in illumination-mode scanning-near-field optical microscopy

Xueen Wang, Zhaozhong Fan, and Tiantong Tang  »View Author Affiliations


JOSA A, Vol. 22, Issue 12, pp. 2730-2736 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002730


View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scanning images in illumination-mode, scanning-near-field optical microscopy (SNOM) are numerically studied by the boundary element method based on rigorous vector electromagnetic theory. Computation results of constant-height and constant-distance images for samples with different topographic features are presented. Effects of the polarization of the input light and the optical parameters of samples on the resolution of SNOM are discussed. The artifacts in constant-distance images are also investigated. Numerical results indicate that the constant-height images for TM input light and constant-distance images for both TE and TM input light give only the local changes of the sample topography because of the loss of the low-frequency component of the topography.

© 2005 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(100.6640) Image processing : Superresolution
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 11, 2005
Manuscript Accepted: May 14, 2005
Published: December 1, 2005

Virtual Issues
Vol. 1, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Xueen Wang, Zhaozhong Fan, and Tiantong Tang, "Simulation of topographic images and artifacts in illumination-mode scanning-near-field optical microscopy," J. Opt. Soc. Am. A 22, 2730-2736 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-12-2730


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. M. Duncan, “Near-field scanning optical microscope for microelectronic materials and devices,” J. Vac. Sci. Technol. A 14, 1914–1918 (1996). [CrossRef]
  2. A. Hartschuh, E. J. Sánchez, X. S. Xie, L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003). [CrossRef] [PubMed]
  3. J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477–482 (1999). [CrossRef]
  4. Y. Martin, S. Rishton, H. K. Wickramasinghe, “Optical data storage read out at 256 Gbits∕in2,” Appl. Phys. Lett. 71, 1–3 (1997). [CrossRef]
  5. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992). [CrossRef]
  6. T. Sugiura, T. Okada, Y. Inouye, O. Nakamura, S. Kawata, “Gold-bead scanning near-field optical microscope with laser-force position control,” Opt. Lett. 22, 1663–1665 (1997). [CrossRef]
  7. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992). [CrossRef]
  8. S. Shalom, K. Lieberman, A. Lewis, S. R. Cohen, “A micropipette force probe suitable for near-field scanning optical microscopy,” Rev. Sci. Instrum. 63, 4061–4065 (1992). [CrossRef]
  9. C. Durkan, I. V. Shvets, “Reflection-mode scanning near-field optical microscopy: Influence of sample type, tip shape and polarization of light,” J. Appl. Phys. 83, 1171–1176 (1998). [CrossRef]
  10. J. K. Trautman, E. Betzig, J. S. Weiner, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Grorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992). [CrossRef]
  11. S. I. Bozhevolnyi, I. I. Smolyaninov, O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback,” Appl. Opt. 34, 3793–3799 (1995). [CrossRef] [PubMed]
  12. A. Gademann, I. V. Shvets, C. Durkan, “Study of polarization-dependent energy coupling between near-field optical probe and mesoscopic metal structure,” J. Appl. Phys. 95, 3988–3993 (2004). [CrossRef]
  13. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997). [CrossRef]
  14. R. L. Williamson, L. J. Brereton, M. Antognozzi, M. J. Miles, “Are artefacts in scanning near-field optical microscopy related to the misuse of shear force?” Ultramicroscopy 71, 165–175 (1998). [CrossRef]
  15. R. Carminati, J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995). [CrossRef]
  16. O. J. F. Martin, C. Girard, A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996). [CrossRef]
  17. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997). [CrossRef]
  18. H. Furukawa, S. Kawata, “Near-field optical microscope images of a dielectric flat substrate with subwavelength strips,” Opt. Commun. 196, 93–102 (2001). [CrossRef]
  19. E. R. Méndez, J.-J. Greffet, R. Carminati, “On the equivalence between the illumination and collection modes of the scanning near-field optical microscope,” Opt. Commun. 142, 7–13 (1997). [CrossRef]
  20. P. J. Valle, J.-J. Greffet, R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648–656 (1999). [CrossRef]
  21. L. Novotny, D. W. Pohl, B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995). [CrossRef] [PubMed]
  22. F. I. Baida, D. Van Labeke, Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 225, 241–252 (2003). [CrossRef]
  23. X. E. Wang, Z. Z. Fan, T. T. Tang, “Study on the power transmission and light spot size of optical probes in scanning near-field optical microscopes,” Opt. Commun. 235, 31–40 (2004). [CrossRef]
  24. X. E. Wang, Z. Z. Fan, T. T. Tang, “Vector near-field calculation of scanning near-field optical microscopy probes using Borgnis potentials as auxiliary functions,” J. Opt. Soc. Am. A 22, 1263–1273 (2005). [CrossRef]
  25. S. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. A 14, 2254–2259 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited