OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 2 — Feb. 1, 2005
  • pp: 250–255

Reconstruction of spatially inhomogeneous dielectric tensors through optical tomography

Hanno Hammer and William R. B. Lionheart  »View Author Affiliations


JOSA A, Vol. 22, Issue 2, pp. 250-255 (2005)
http://dx.doi.org/10.1364/JOSAA.22.000250


View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method to reconstruct weakly anisotropic inhomogeneous dielectric tensors inside a transparent medium is proposed. The mathematical theory of integral geometry is cast into a workable framework that allows the full determination of dielectric tensor fields by scalar Radon inversions of the polarization transformation data obtained from six planar tomographic scanning cycles. Furthermore, a careful derivation of the usual equations of integrated photoelasticity in terms of heuristic length scales of the material inhomogeneity and anisotropy is provided, resulting in a self-contained account about the reconstruction of arbitrary three-dimensional, weakly anisotropic dielectric tensor fields.

© 2005 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(100.3190) Image processing : Inverse problems
(160.1190) Materials : Anisotropic optical materials

History
Original Manuscript: June 10, 2004
Manuscript Accepted: August 13, 2004
Published: February 1, 2005

Citation
Hanno Hammer and William R. B. Lionheart, "Reconstruction of spatially inhomogeneous dielectric tensors through optical tomography," J. Opt. Soc. Am. A 22, 250-255 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-2-250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lassas, G. Uhlmann, “On determining a Riemannian manifold from the Dirichlet-to-Neumann map,” Ann. Sci. Ec. Normale Super. 34, 771–787 (2001).
  2. P. Ola, L. Päivärinta, E. Somersalo, “An inverse boundary value problem in electrodynamics,” Duke Math. J. 70, 617–653 (1993). [CrossRef]
  3. M. Joshi, S. McDowall, “Total determination of material parameters from electromagnetic boundary information,” Pac. J. Math. 193, 107–129 (2000). [CrossRef]
  4. Y. A. Kravtsov, “‘Quasi-isotropic’ approximation of geometric optics,” Dokl. Akad. Nauk SSSR 183, 74–76 (1968).
  5. Y. A. Kravtsov, Y. I. Orlov, Geometric Optics of Inhomogeneous Media (Nauka, Moscow, 1980).
  6. A. A. Fuki, Y. A. Kravtsov, O. N. Naida, Geometrical Optics of Weakly Anisotropic Media (Gordon & Breach, Amsterdam, 1998).
  7. V. A. Sharafutdinov, Integral Geometry of Tensor Fields (VSP, Zeist, The Netherlands, 1994).
  8. M. M. Frocht, Photoelasticity (Wiley, New York, 1948), Vols. 1 and 2.
  9. E. G. Coker, L. N. G. Filon, Photo-Elasticity, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1957).
  10. P. S. Theocaris, E. E. Gdoutos, Matrix Theory of Photoelasticity, Vol. 11 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1979). [CrossRef]
  11. H. T. Jessop, F. C. Harris, Photoelasticity (Cleaver-Hume, London, 1949).
  12. A. W. Hendry, Photoelastic Analysis (Pergamon, Oxford, UK, 1966).
  13. H. K. Aben, “Optical phenomena in photoelastic models by the rotation of principal axes,” Exp. Mech. 6, 13–22 (1966). [CrossRef]
  14. H. Aben, Integrated Photoelasticity (McGraw-Hill, New York, 1979).
  15. H. K. Aben, J. I. Josepson, K.-J. E. Kell, “The case of weak birefringence in integrated photoelasticity,” Opt. Lasers Eng. 11, 145–157 (1989). [CrossRef]
  16. H. Aben, C. Guillemet, Photoelasticity of Glass (Springer-Verlag, Berlin, 1993).
  17. H. Aben, A. Puro, “Photoelastic tomography for three-dimensional flow birefringence studies,” Inverse Probl. 13, 215–221 (1997). [CrossRef]
  18. M. Davin, “Sur la composition des petites biréfringences subies par un rayon traversant un modèle photoélastique faiblement contraint,” C.R. Seances Acad. Sci. Ser. A 269, 1227–1229 (1969).
  19. H. Aben, S. Idnurm, A. Puro, “Integrated photoelasticity in case of weak birefringence,” in Proceedings of the 9th International Conference on Experimental Mechanics (ICEM, Copenhagen, 1990), Vol. 2, pp. 867–875.
  20. H. Aben, S. Idnurm, J. Josepson, K.-J. Kell, A. Puro, “Optical tomography of the stress tensor field,” in Analytical Methods for Optical Tomography, G. G. Levin, ed., Proc. SPIE1843, 220–229 (1991). [CrossRef]
  21. H. Aben, A. Errapart, L. Ainola, J. Anton, “Photoelastic tomography in linear approximation,” in Proceedings of the International Conference on Advanced Technology in Experimental Mechanics, 2003 (available on CD-ROM).
  22. Y. A. Andrienko, M. S. Dubovikov, “Optical tomography of tensor fields: the general case,” J. Opt. Soc. Am. A 11, 1628–1631 (1994). [CrossRef]
  23. Y. A. Andrienko, M. S. Dubovikov, A. D. Gladun, “Optical tomography of a birefringent medium,” J. Opt. Soc. Am. A 9, 1761–1764 (1992). [CrossRef]
  24. Y. A. Andrienko, M. S. Dubovikov, A. D. Gladun, “Optical tensor field tomography: the Kerr effect and axisymmetric integrated photoelasticity,” J. Opt. Soc. Am. A 9, 1765–1768 (1992). [CrossRef]
  25. M. L. L. Wijerathne, K. Oguni, M. Hori, “Tensor field tomography based on 3D photoelasticity,” Mech. Mater. 34, 533–545 (2002). [CrossRef]
  26. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  27. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Holt, Rinehart & Winston, New York, 1975).
  28. A. Sommerfeld, Optics, Lectures on Theoretical Physics, 1st ed. (Academic, New York, 1954), Vol. 4.
  29. R. W. Ditchburn, Light, 3rd ed. (Academic, London, 1976).
  30. R. S. Longhurst, Geometrical and Physical Optics, 3rd ed. (Longman, London, 1973).
  31. H. Poincaré, Théorie mathématique de la lumiére (Carré Naud, Paris, 1892).
  32. H. Hammer, “Characteristic parameters in integrated photoelasticity: an application of Poincaré’s equivalence theorem,” J. Mod. Opt. 51, 597–618 (2004).
  33. D. Schupp, “Optical tensor field tomography for the determination of 3D stress in photoelastic materials,” in 1st World Congress on Industrial Process Tomography (Buxton, Greater Manchester, UK, 1999), pp. 494–501.
  34. D. Schupp, “Optische Tensortomographie zur Bestimmung räumlicher Spannungsverteilungen,” Tech. Mess. 66, 54–60 (1999). [CrossRef]
  35. S. Helgason, The Radon Transform (Birkhäuser, Basel, 1980).
  36. F. Natterer, The Mathematics of Computerized Tomography (Wiley–Teubner, Stuttgart, Germany, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited