Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Linear systems modeling of adaptive optics in the spatial-frequency domain

Not Accessible

Your library or personal account may give you access

Abstract

Spatial-frequency domain techniques have traditionally been applied to obtain estimates for the independent effects of a variety of individual error sources in adaptive optics (AO). Overall system performance is sometimes estimated by introducing the approximation that these individual error terms are statistically independent, so that their magnitudes may be summed in quadrature. More accurate evaluation methods that account for the correlations between the individual error sources have required Monte Carlo simulations or large matrix calculations that can take much longer to compute, particularly as the order of the AO system increases beyond a few hundred degrees of freedom. We describe an approach to evaluating AO system performance in the spatial-frequency domain that is relatively computationally efficient but still accounts for many of the interactions between the fundamental error sources in AO. We exploit the fact that (in the limits of an infinite aperture and geometrical optics) all the basic wave-front propagation, sensing, and correction processes that describe the behavior of an AO system are spatial-filtering operations in the Fourier domain. Essentially all classical wave-front control algorithms and evaluation formulas are expressed in terms of these filters and may therefore be evaluated one spatial-frequency component at a time. Performance estimates for very-high-order AO systems may be obtained in 1 to 2 orders of magnitude less time than needed when detailed simulations or analytical models in the spatial domain are used, with a relative discrepancy of 5% to 10% for typical sample problems.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Analytical modeling of adaptive optics: foundations of the phase spatial power spectrum approach

Laurent Jolissaint, Jean-Pierre Véran, and Rodolphe Conan
J. Opt. Soc. Am. A 23(2) 382-394 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.