OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 2 — Feb. 1, 2005
  • pp: 377–384

Method for measuring off-diagonal Kerr coefficients by using polarized light transmission

Mike Melnichuk and Lowell T. Wood  »View Author Affiliations

JOSA A, Vol. 22, Issue 2, pp. 377-384 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a method for measuring the off-diagonal coefficients of the quadratic electro-optic (Kerr) tensor by using polarized light transmission. The method relies on designing an experimental configuration in which the linear electro-optic (Pockels) effect does not contribute to the data. Our method can be used to obtain off-diagonal Kerr coefficients for all but two of the 20 crystal point groups for which the Pockels effect and the Kerr effect coexist. Our theoretical model includes effects from transmission, multiple reflections, and electrostriction but neglects absorption in the crystal. To verify the method, we used it to measure the R12 and R13 Kerr coefficients for a (100)-type single crystal of ferroelectric barium titanate (BaTiO3) at room temperature (23.5°). To our knowledge, this is the first time this method has been used and the first time these coefficients have been measured for the unclamped crystal in the tetragonal state. The mean values obtained with this method are R12=-3.5±0.3×10-17 m2/V2 and R13=-8.0±0.7×10-17 m2/V2.

© 2005 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.2260) Materials : Ferroelectrics
(190.3270) Nonlinear optics : Kerr effect
(230.4110) Optical devices : Modulators
(260.1180) Physical optics : Crystal optics

Original Manuscript: May 7, 2004
Revised Manuscript: July 2, 2004
Manuscript Accepted: August 30, 2004
Published: February 1, 2005

Mike Melnichuk and Lowell T. Wood, "Method for measuring off-diagonal Kerr coefficients by using polarized light transmission," J. Opt. Soc. Am. A 22, 377-384 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, San Diego, 2003).
  2. S. V. Popov, Y. U. Svirko, N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics (Institute of Physics, Bristol, UK, 1995).
  3. A. F. Devonshire, “Theory of barium titanate—part I,” Philos. Mag. 40, 1040–1055 (1949).
  4. A. F. Devonshire, “Theory of barium titanate—part II,” Philos. Mag. 42, 1065–1079 (1951).
  5. A. F. Devonshire, “Theory of ferroelectrics,” Adv. Phys. 3, 85–130 (1954). [CrossRef]
  6. A. D. Franklin, “Ferroelectricity of barium titanate single crystals,” Prog. Dielectr. 4, 171–215 (1959).
  7. W. J. Merz, “Ferroelectricity,” Prog. Dielectr. 6, 101–149 (1961).
  8. E. T. Jaynes, Ferroelectricity (Princeton U. Press, Princeton, N.J., 1953).
  9. H. D. Megaw, Ferroelectricity in Crystals (Methuen, London, 1957).
  10. W. Känzig, “Ferroelectrics and antiferroelectrics,” in Vol. 4 of Solid State Physics (Academic, New York, 1957), pp. 1–197.
  11. F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, New York, 1962; reprint, Dover, New York, 1993).
  12. J. C. Burfoot, Ferroelectrics—An Introduction to the Physical Principles (Van Nostrand, London, 1967).
  13. J. Grindlay, An Introduction to the Phenomenological Theory of Ferroelectricity (Pergamon, Oxford, UK, 1970).
  14. T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectrics (Gordon & Breach, New York, 1976).
  15. M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, UK, 1977).
  16. J. C. Burfoot, G. W. Taylor, Polar Dielectrics and Their Applications (Macmillan, London, 1979).
  17. V. M. Fridkin, Photoferroelectrics (Springer-Verlag, New York, 1979).
  18. B. A. Strukov, A. P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer-Verlag, New York, 1998).
  19. D. Mayerhofer, “Transition to the ferroelectric state in barium titanate,” Phys. Rev. 112, 413–423 (1958). [CrossRef]
  20. W. Haas, R. Johannes, P. Cholet, “Light beam deflection using the Kerr effect in single crystal prisms of BaTiO3,” Appl. Opt. 3, 988–989 (1964). [CrossRef]
  21. V. É. Perfilova, A. S. Sonin, “The electro-optic properties of single crystals of barium titanate,” Sov. Phys. Solid State 8, 82–84 (1966).
  22. A. S. Sonin, V. É. Perfilova, “Electro-optical properties of barium titanate in the paraelectric phase,” Sov. Phys. Crystallogr. 14, 419–420 (1969).
  23. F.-S. Chen, “Modulators for optical communications,” Proc. IEEE 58, 1440–1457 (1970). [CrossRef]
  24. K. H. Hellwege, Landolt-Börnstein, New Series III, Vol. 2 (Springer-Verlag, Berlin, 1969).
  25. K. H. Hellwege, Landolt-Börnstein, New Series III, Vol. 16 (Springer-Verlag, Berlin, 1981).
  26. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 2003).
  27. M. J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, Fla., 2003).
  28. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, New York, 2003).
  29. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, New York, 2001).
  30. A. R. Johnston, J. M. Weingart, “Determination of the low-frequency linear electro-optic effect in tetragonal BaTiO3,” J. Opt. Soc. Am. 55, 828–834 (1965). [CrossRef]
  31. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, Amsterdam, 1987).
  32. M. E. Drougard, D. R. Young, “Domain clamping effect in barium titanate single crystals,” Phys. Rev. 94, 1561–1564 (1954). [CrossRef]
  33. E. Burcsu, G. Ravichandran, K. Bhattacharya, “Electro-mechanical behaviour of 90-degree domain motion in barium titanate single crystals,” in Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, C. S. Lynch, ed., Proc. SPIE4333, 121–130 (2001).
  34. E. Burcsu, “Investigations of large strain actuation in barium titanate,” Ph.D. thesis (California Institute of Technology, Pasadena, Calif., 2001), http://etd.caltech.edu/etd/available/etd-10232001-192042/ .
  35. M.T.I. Corporation, www.mticrystal.com .
  36. I. P. Kaminow, An Introduction to Electro-optic Devices (Academic, New York, 1974).
  37. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, New York, 1997).
  38. R. D. Guenther, Modern Optics (Wiley, New York, 1990).
  39. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  40. K. Iizuka, Elements of Photonics (Wiley, New York, 2002).
  41. E. Hecht, Optics, 4th ed. (Pearson Addison Wesley, New York, 2001).
  42. M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986).
  43. G. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, New York, 1989).
  44. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 2002).
  45. C. C. Davis, Lasers and Electro-Optics (Cambridge U. Press, Cambridge, UK, 1996).
  46. M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals (Consultants Bureau, New York, 1964).
  47. M. Melnichuk, L. T. Wood, “Time-resolved optical transients in tetragonal BaTiO3,” J. Opt. Soc. Am. A (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited