OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 3 — Mar. 1, 2005
  • pp: 460–474

Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms

Soo-Chang Pei and Jian-Jiun Ding  »View Author Affiliations

JOSA A, Vol. 22, Issue 3, pp. 460-474 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

© 2005 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.2590) Fourier optics and signal processing : ABCD transforms
(350.6980) Other areas of optics : Transforms

Original Manuscript: May 13, 2004
Revised Manuscript: September 14, 2004
Manuscript Accepted: September 16, 2004
Published: March 1, 2005

Soo-Chang Pei and Jian-Jiun Ding, "Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms," J. Opt. Soc. Am. A 22, 460-474 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Slepian, H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—I,” Bell Syst. Tech. J. 40, 43–63 (1961). [CrossRef]
  2. H. J. Landau, H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—II,” Bell Syst. Tech. J. 40, 65–84 (1961). [CrossRef]
  3. H. J. Landau, H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—III,” Bell Syst. Tech. J. 41, 1295–1336 (1962). [CrossRef]
  4. D. Slepian, “Some asymptotic expansions for prolate spheroidal wave functions,” J. Math. Phys. 44, 99–140 (1965).
  5. D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty—V: the discrete case,” Bell Syst. Tech. J. 57, 1371–1430 (1977). [CrossRef]
  6. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford U. Press, London, 1988).
  7. B. R. Frieden, “Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions,” in Progress in Optics, Vol. IX, E. Wolf, ed. (North-Holland, Amsterdam, 1971), pp. 311–407.
  8. A. Papoulis, M. S. Bertran, “Digital filtering and prolate functions,” IEEE Trans. Circuit Theory 19, 674–681 (1972). [CrossRef]
  9. H. M. Ozaktas, M. A. Kutay, Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2000).
  10. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980). [CrossRef]
  11. K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, New York, 1979), Chap. 9, pp. 381–416.
  12. L. M. Bernardo, “ABCD matrix formalism of fractional Fourier optics,” Opt. Eng. (Bellingham) 35, 732–740 (1996). [CrossRef]
  13. M. J. Bastiaans, “Propagation laws for the secondorder moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).
  14. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
  15. P. Pellat-Finet, G. Bonnet, “Fractional order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994). [CrossRef]
  16. S. Abe, J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994). [CrossRef] [PubMed]
  17. S. C. Pei, J. J. Ding, “Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms,” J. Opt. Soc. Am. A 20, 522–532 (2003). [CrossRef]
  18. K. Khare, N. George, “Fractional finite Fourier transform,” J. Opt. Soc. Am. A 21, 1179–1185 (2004). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited