OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 3 — Mar. 1, 2005
  • pp: 518–528

Microphysical aerosol parameters from multiwavelength lidar

Christine Böckmann, Irina Mironova, Detlef Müller, Lars Schneidenbach, and Remo Nessler  »View Author Affiliations

JOSA A, Vol. 22, Issue 3, pp. 518-528 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The hybrid regularization technique developed at the Institute of Mathematics of Potsdam University (IMP) is used to derive microphysical properties such as effective radius, surface-area concentration, and volume concentration, as well as the single-scattering albedo and a mean complex refractive index, from multiwavelength lidar measurements. We present the continuation of investigations of the IMP method. Theoretical studies of the degree of ill-posedness of the underlying model, simulation results with respect to the analysis of the retrieval error of microphysical particle properties from multiwavelength lidar data, and a comparison of results for different numbers of backscatter and extinction coefficients are presented. Our analysis shows that the backscatter operator has a smaller degree of ill-posedness than the operator for extinction. This fact underlines the importance of backscatter data. Moreover, the degree of ill-posedness increases with increasing particle absorption, i.e., depends on the imaginary part of the refractive index and does not depend significantly on the real part. Furthermore, an extensive simulation study was carried out for logarithmic-normal size distributions with different median radii, mode widths, and real and imaginary parts of refractive indices. The errors of the retrieved particle properties obtained from the inversion of three backscatter (355, 532, and 1064 nm) and two extinction (355 and 532 nm) coefficients were compared with the uncertainties for the case of six backscatter (400, 710, 800 nm, additionally) and the same two extinction coefficients. For known complex refractive index and up to 20% normally distributed noise, we found that the retrieval errors for effective radius, surface-area concentration, and volume concentration stay below approximately 15% in both cases. Simulations were also made with unknown complex refractive index. In that case the integrated parameters stay below approximately 30%, and the imaginary part of the refractive index stays below 35% for input noise up to 10% in both cases. In general, the quality of the retrieved aerosol parameters depends strongly on the imaginary part owing to the degree of ill-posedness. It is shown that under certain constraints a minimum data set of three backscatter coefficients and two extinction coefficients is sufficient for a successful inversion. The IMP algorithm was finally tested for a measurement case.

© 2005 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(100.0100) Image processing : Image processing
(100.3190) Image processing : Inverse problems
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering

Original Manuscript: July 9, 2004
Manuscript Accepted: September 2, 2004
Published: March 1, 2005

Christine Böckmann, Irina Mironova, Detlef Müller, Lars Schneidenbach, and Remo Nessler, "Microphysical aerosol parameters from multiwavelength lidar," J. Opt. Soc. Am. A 22, 518-528 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. The Intergovernmental Panel on Climate Change (IPCC), IPCC Third Assessment Report—Climate Change 2001: The Scientific Basis (Cambridge U. Press, Cambridge, UK, 2001).
  2. V. Matthias, J. Bösenberg, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, A. Chaykovski, G. Chourdakis, A. Comeron, A. Delaval, F. de Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodriguez, U. Wandinger, X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43, 961–976 (2004). [CrossRef]
  3. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning six-wavelength eleven-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000). [CrossRef]
  4. I. Mattis, A. Ansmann, D. Müller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, doi: (2002). [CrossRef]
  5. C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution,” Appl. Opt. 40, 1329–1342 (2001). [CrossRef]
  6. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, D. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002). [CrossRef] [PubMed]
  7. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999). [CrossRef]
  8. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. de Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004). [CrossRef] [PubMed]
  9. G. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  10. I. Schult, J. Feichter, W. F. Cooke, “Effect of black carbon and sulfate aerosols on the global radiation budget,” J. Geophys. Res. 102, 30107–30117 (1997). [CrossRef]
  11. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).
  12. G. Lesins, P. Chylek, U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res. 107, 4094, doi:10.1029/2001JD000973 (2002). [CrossRef]
  13. H. Horvath, “Influence of atmospheric aerosols upon the global radiation balance,” in Atmospheric Particles, R. M. Harrison, R. E. van Grieken, eds. (Wiley, New York, 1998), pp. 543–596.
  14. B. Schmid, J. M. Livingston, P. B. Russell, P. A. Durkee, H. H. Jonsson, D. R. Collins, R. C. Flagan, J. H. Seinfeld, S. Gasso, D. A. Hegg, E. Ostrom, K. J. Noone, E. J. Welton, K. J. Voss, H. R. Gordon, P. Formenti, M. O. Andreae, “Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements,” Tellus, Ser. B 52, 568–593 (2000). [CrossRef]
  15. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  16. W. F. Foshag, “New mineral names,” Am. Mineral. 18, 179–180 (1933).
  17. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (AFGL-TR-79-0214, U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass. 01731, 1979).
  18. N. Bukowiecki, “Mobile pollutant measurement laboratories—spatial distribution and seasonal variation of aerosol parameters in the Zürich (Switzerland) and Minneapolis (USA) area,” Ph.D. thesis (Swiss Federal Institute of Technology, Zurich, 2003).
  19. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999). [CrossRef]
  20. G. Mie, “Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908). [CrossRef]
  21. H. W. Engl, Integralgleichungen (Springer-Verlag, Vienna, 1997).
  22. A. K. Louis, Inverse und schlecht gestellte Probleme (Teubner, Stuttgart, Germany, 1989).
  23. R. Kress, Linear Integral Equations (Springer-Verlag, New York, 1989).
  24. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1998).
  25. S.-H. Chang, “A generalization of a theorem of Hille and Tamarkin with applications,” Proc. London Math. Soc. 3, 22–29 (1959).
  26. F. R. de Hoog, “Review of Fredholm equations of the first kind,” in The Application and Numerical Solution of Integral Equations, R. S. Anderssen, F. R. de Hoog, M. A. Lukas, eds. (Sijthoff Noordhoff, Leyden, The Netherlands, 1980), pp. 119–134.
  27. H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, Dordrecht, 1996).
  28. P. C. Hansen, “Computation of the singular value expansion,” Computing 40, 185–199 (1988). [CrossRef]
  29. R. C. Allen, W. R. Boland, V. Faber, G. M. Wing, “Singular values and condition numbers of Galerkin matrices arising from linear integral equations of the first kind,” J. Math. Anal. Appl. 109, 564–590 (1985). [CrossRef]
  30. G. M. Wing, “Condition numbers of matrices arising from the numerical solution of linear integral equations of the first kind,” J. Integral Equ. 9, 191–204 (1985).
  31. P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral equations of the first kind,” Inverse Probl. 8, 849–875 (1992). [CrossRef]
  32. J. Heintzenberg, T. Thomas, B. Wehner, A. Wiedensohler, H. Wex, A. Ansmann, I. Mattis, D. Müller, M. Wendisch, S. Eckhardt, A. Stohl, “Arctic haze over Central Europa,” Tellus, Ser. B 55, 796–807 (2003). [CrossRef]
  33. D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, U. Wandinger, “Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109, D13206, doi: (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited