OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 3 — Mar. 1, 2005
  • pp: 546–551

Experimental determination of photon propagation in highly absorbing and scattering media

Jorge Ripoll, Doreen Yessayan, Giannis Zacharakis, and Vasilis Ntziachristos  »View Author Affiliations


JOSA A, Vol. 22, Issue 3, pp. 546-551 (2005)
http://dx.doi.org/10.1364/JOSAA.22.000546


View Full Text Article

Enhanced HTML    Acrobat PDF (136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores. Several theoretical models have been validated for diffuse photon propagation in highly scattering and low-absorbing media that describe the optical appearance of tissues in the near-infrared (NIR) region. However, these models are not generally applicable to quantitative optical investigations in the visible because of the significantly higher tissue absorption in this spectral region compared with that in the NIR. We performed photon measurements through highly scattering and absorbing media for ratios of the absorption coefficient to the reduced scattering coefficient ranging approximately from zero to one. We examined experimentally the performance of the absorption-dependent diffusion coefficient defined by Aronson and Corngold [ J. Opt. Soc. Am. A 16, 1066 ( 1999)] for quantitative estimations of photon propagation in the low- and high-absorption regimes. Through steady-state measurements we verified that the transmitted intensity is well described by the diffusion equation by considering a modified diffusion coefficient with a nonlinear dependence on the absorption. This study confirms that simple analytical solutions based on the diffusion approximation are suitable even for high-absorption regimes and shows that diffusion-approximation-based models are valid for quantitative measurements and tomographic imaging of tissues in the visible.

© 2005 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion

History
Original Manuscript: August 2, 2004
Manuscript Accepted: September 22, 2004
Published: March 1, 2005

Citation
Jorge Ripoll, Doreen Yessayan, Giannis Zacharakis, and Vasilis Ntziachristos, "Experimental determination of photon propagation in highly absorbing and scattering media," J. Opt. Soc. Am. A 22, 546-551 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-3-546

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited