OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 3 — Mar. 1, 2005
  • pp: 546–551

Experimental determination of photon propagation in highly absorbing and scattering media

Jorge Ripoll, Doreen Yessayan, Giannis Zacharakis, and Vasilis Ntziachristos  »View Author Affiliations

JOSA A, Vol. 22, Issue 3, pp. 546-551 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores. Several theoretical models have been validated for diffuse photon propagation in highly scattering and low-absorbing media that describe the optical appearance of tissues in the near-infrared (NIR) region. However, these models are not generally applicable to quantitative optical investigations in the visible because of the significantly higher tissue absorption in this spectral region compared with that in the NIR. We performed photon measurements through highly scattering and absorbing media for ratios of the absorption coefficient to the reduced scattering coefficient ranging approximately from zero to one. We examined experimentally the performance of the absorption-dependent diffusion coefficient defined by Aronson and Corngold [ J. Opt. Soc. Am. A 16, 1066 ( 1999)] for quantitative estimations of photon propagation in the low- and high-absorption regimes. Through steady-state measurements we verified that the transmitted intensity is well described by the diffusion equation by considering a modified diffusion coefficient with a nonlinear dependence on the absorption. This study confirms that simple analytical solutions based on the diffusion approximation are suitable even for high-absorption regimes and shows that diffusion-approximation-based models are valid for quantitative measurements and tomographic imaging of tissues in the visible.

© 2005 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion

Original Manuscript: August 2, 2004
Manuscript Accepted: September 22, 2004
Published: March 1, 2005

Jorge Ripoll, Doreen Yessayan, Giannis Zacharakis, and Vasilis Ntziachristos, "Experimental determination of photon propagation in highly absorbing and scattering media," J. Opt. Soc. Am. A 22, 546-551 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  2. K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, New York, 1967).
  3. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  4. V. Tuchin, ed., Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of Tutorial Texts on Optical Engineering (SPIE Press, Bellingham, Wash., 2000).
  5. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  6. I. Freund, M. Kaveh, M. Rosenbluh, “Dynamic multiple scattering: ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60, 1130–1133 (1988). [CrossRef] [PubMed]
  7. K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 65, 2210–2211 (1990). [CrossRef]
  8. A. Ishimaru, “Difference between Ishimaru’s and Furutsu’s theories on pulse propagation in discrete random media,” J. Opt. Soc. Am. A 1, 506–509 (1984). [CrossRef]
  9. S. Ito, “Comparison of diffusion theories for optical pulse waves propagated in discrete random media,” J. Opt. Soc. Am. A 1, 502–505 (1984). [CrossRef]
  10. K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994). [CrossRef]
  11. K. Furutsu, “Pulse wave scattering by an absorber and integrated attenuation in the diffusion approximation,” J. Opt. Soc. Am. A 14, 267–274 (1997). [CrossRef]
  12. K. Furutsu, “Diffusion equation derived from space-time transport equation,” J. Opt. Soc. Am. 70, 360–366 (1980). [CrossRef]
  13. T. Durduran, A. G. Yodh, B. Chance, D. A. Boas, “Does the photon-diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997). [CrossRef]
  14. W. Cai, M. Xu, M. Lax, R. R. Alfano, “Diffusion coefficient depends on time, not on absorption,” Opt. Lett. 27, 731–733 (2002). [CrossRef]
  15. M. Bassani, F. Martelli, G. Zaccanti, D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997). [CrossRef] [PubMed]
  16. T. Nakai, G. Nishimura, M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997). [CrossRef]
  17. I. Delfino, M. Lepore, P. L. Indovina, “Experimental tests of different solutions to the diffusion equation for optical characterization of scattering media by time-resolved transmittance,” Appl. Opt. 38, 4228–4236 (1999). [CrossRef]
  18. A. Ishimaru, “Diffusion of a pulse in densely distributed scatterers,” J. Opt. Soc. Am. 68, 1045–1050 (1978). [CrossRef]
  19. D. J. Durian, J. Rudnick, “Spatially resolved backscattering: implementation of extrapolation boundary condition and exponential source,” J. Opt. Soc. Am. A 16, 837–844 (1999). [CrossRef]
  20. A. Y. Polishchuk, S. Gutman, M. Lax, R. R. Alfano, “Photon-density modes beyond the diffusion approximation: a scalar wave-diffusion equation,” J. Opt. Soc. Am. A 14, 230–234 (1997). [CrossRef]
  21. D. J. Durian, “The diffusion coefficient depends on absorption,” Opt. Lett. 23, 1502–1504 (1998). [CrossRef]
  22. R. Elaloufi, R. Carminati, J.-J. Greffet, “Time-dependent transport through scattering media: from radiative transfer to diffusion,” J. Opt. A, Pure Appl. Opt. 4, S103–S108 (2002). [CrossRef]
  23. R. Elaloufi, R. Carminati, J.-J. Greffet, “Definition of the diffusion coefficient in scattering and absorbing media,” J. Opt. Soc. Am. A 20, 678–685 (2003). [CrossRef]
  24. K. Rinzema, L. H. P. Murrer, W. M. Star, “Direct experimental verification of light transport theory in an optical phantom,” J. Opt. Soc. Am. A 15, 2078–2088 (1998). [CrossRef]
  25. R. Aronson, N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999). [CrossRef]
  26. R. Graaff, J. J. Ten Bosch, “Diffusion coefficient in photon diffusion theory,” Opt. Lett. 25, 43–45 (2000). [CrossRef]
  27. R. Weissleder, U. Mahmood, “Special review: molecular imaging,” Radiology 219, 316–333 (2001). [CrossRef] [PubMed]
  28. R. Weissleder, V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003). [CrossRef] [PubMed]
  29. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1, 82–88 (2002). [CrossRef]
  30. V. Ntziachristos, C. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002). [CrossRef] [PubMed]
  31. V. Ntziachristos, R. Weissleder, “CCD-based scanner for three-dimensional fluorescence-mediated diffuse optical tomography of small animals,” Med. Phys. 29, 803–809 (2002). [CrossRef] [PubMed]
  32. E. E. Graves, J. Ripoll, R. Weissleder, V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003). [CrossRef] [PubMed]
  33. C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18, 593–603 (1995). [CrossRef] [PubMed]
  34. C. H. Contag, D. Jenkins, P. R. Contag, R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia 2, 41–52 (2000). [CrossRef] [PubMed]
  35. C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, D. A. Benaron, “Visualizing gene expression in living mammals using a bioluminescent reporter,” Photochem. Photobiol. 66, 523–531 (1997). [CrossRef] [PubMed]
  36. R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999). [CrossRef] [PubMed]
  37. U. Mahmood, C. Tung, A. Bogdanov, R. Weissleder, “Near infrared optical imaging system to detect tumor protease activity,” Radiology 213, 866–870 (1999). [CrossRef] [PubMed]
  38. G. Holte, “On a method of calculating the density of neutrons emitted form a point source in an infinite medium,” Ark. Mat., Astron. Fys. 35A, 1–9 (1948).
  39. K. M. Case, F. Hoffmann, G. Placzek, Introduction to the Theory of Neutron Diffusion (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1953).
  40. R. Graaff, K. Rinzema, “Practical improvements on photon diffusion theory: application to isotropic scattering,” Phys. Med. Biol. 23, 3043–3050 (2001). [CrossRef]
  41. J. Beek, P. Blokland, P. Posthumus, M. Aalders, J. Pickering, H. Sterenborg, M. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997). [CrossRef] [PubMed]
  42. I. Kuscer, N. J. McCormick, “Some analytical results for radiative transfer in thick atmospheres,” Transp. Theory Stat. Phys. 20, 351–381 (1991). [CrossRef]
  43. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  44. H. J. van Staveren, C. J. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemer, “Light Scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  45. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995). [CrossRef]
  46. J. A. Nelder, R. Mead, “A Simplex method for function minimization,” Comput. J. 7, 308–313 (1965). [CrossRef]
  47. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited