OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 3 — Mar. 1, 2005
  • pp: 561–568

Degree of polarization in tightly focused optical fields

Klas Lindfors, Tero Setälä, Matti Kaivola, and Ari T. Friberg  »View Author Affiliations

JOSA A, Vol. 22, Issue 3, pp. 561-568 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the degree of polarization of random, statistically stationary electromagnetic fields in the focal region of a high-numerical-aperture imaging system. The Richards–Wolf theory for focusing is employed to compute the full 3 × 3 electric coherence matrix, from which the degree of polarization is obtained by using a recent definition for general three-dimensional electromagnetic waves. Significant changes in the state of partial polarization, compared with that of the incident illumination, are observed. For example, a wave consisting of two orthogonal and uncorrelated incident-electric-field components produces rings of full polarization in the focal plane. These effects are explained by considering the distribution of the spectral densities of the three electric field components as well as the correlations between them.

© 2005 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(110.2990) Imaging systems : Image formation theory
(260.5430) Physical optics : Polarization

Original Manuscript: July 8, 2004
Manuscript Accepted: September 11, 2004
Published: March 1, 2005

Klas Lindfors, Ari T. Friberg, Tero Setälä, and Matti Kaivola, "Degree of polarization in tightly focused optical fields," J. Opt. Soc. Am. A 22, 561-568 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef] [PubMed]
  2. B. Sick, B. Hecht, L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000). [CrossRef] [PubMed]
  3. I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997). [CrossRef] [PubMed]
  4. P. A. Maia Neto, H. M. Nussenzveig, “Theory of optical tweezers,” Europhys. Lett. 50, 702–708 (2000). [CrossRef]
  5. B. Richards, E. Wolf, “Electromagnetic diffraction in op-tical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  6. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  7. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  8. Q. Zhan, J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002). [CrossRef] [PubMed]
  9. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  10. C. J. R. Sheppard, “Focal distributions and Hertz potentials,” Opt. Commun. 160, 191–194 (1999). [CrossRef]
  11. J. Lekner, “Polarization of tightly focused laser beams,” J. Opt. A 5, 6–14 (2003). [CrossRef]
  12. J. J. Stamnes, ed., Electromagnetic Fields in the Focal Region, Vol. 168 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 2001).
  13. J. J. Stamnes, D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150, 251–262 (1998). [CrossRef]
  14. J. J. Stamnes, G. S. Sithambaranathan, M. Jain, J. K. Lotsberg, V. Dhaylan, “Focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 226, 107–123 (2003). [CrossRef]
  15. L. A. Chernov, Wave Propagation in a Random Medium, Part III (McGraw-Hill, New York, 1960).
  16. A. T. Friberg, J. Turunen, “Imaging of Gaussian Schell-model sources,” J. Opt. Soc. Am. A 5, 713–720 (1988). [CrossRef]
  17. W. Wang, A. T. Friberg, E. Wolf, “Focusing of partially coherent light in systems of large Fresnel numbers,” J. Opt. Soc. Am. A 14, 491–496 (1997). [CrossRef]
  18. T. Setälä, A. Shevchenko, M. Kaivola, A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  19. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  20. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998).
  21. J. C. Samson, J. V. Olson, “Some comments on the descriptions of the polarization states of waves,” Geophys. J. R. Astron. Soc. 61, 115–129 (1980). [CrossRef]
  22. R. Barakat, “n-fold polarization measures and associated thermodynamic entropy of N partially coherent pencils of radiation,” Opt. Acta 30, 1171–1182 (1983). [CrossRef]
  23. J. Ellis, A. Dogariu, E. Wolf, “The concept of polarization in near field optics,” CLEO/IQEC and PhAST Technical Digest on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper IWG4.
  24. J. J. Stamnes, Waves in Focal Regions (Hilger, Bristol, UK, 1986).
  25. T. Setälä, K. Lindfors, M. Kaivola, J. Tervo, A. T. Friberg, “Intensity fluctuations and degree of polarization in three-dimensional thermal light fields,” Opt. Lett. 29, 2587–2589 (2004). [CrossRef] [PubMed]
  26. The validity of the Debye approximation requires that the Fresnel number NF≫1,which may not hold for a very small NA.
  27. S. K. Rhodes, K. A. Nugent, A. Roberts, “Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe,” J. Opt. Soc. Am. A 19, 1689–1693 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited