OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 4 — Apr. 1, 2005
  • pp: 597–603

Multifacet structure of observed reconstructed integral images

Manuel Martı́nez-Corral, Bahram Javidi, Raúl Martı́nez-Cuenca, and Genaro Saavedra  »View Author Affiliations

JOSA A, Vol. 22, Issue 4, pp. 597-603 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (706 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensional images generated by an integral imaging system suffer from degradations in the form of grid of multiple facets. This multifacet structure breaks the continuity of the observed image and therefore reduces its visual quality. We perform an analysis of this effect and present the guidelines in the design of lenslet imaging parameters for optimization of viewing conditions with respect to the multifacet degradation. We consider the optimization of the system in terms of field of view, observer position and pupil function, lenslet parameters, and type of reconstruction. Numerical tests are presented to verify the theoretical analysis.

© 2005 Optical Society of America

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.2040) Instrumentation, measurement, and metrology : Displays

Original Manuscript: July 30, 2004
Manuscript Accepted: October 4, 2004
Published: April 1, 2005

Manuel Martı́nez-Corral, Raúl Martı́nez-Cuenca, Genaro Saavedra, and Bahram Javidi, "Multifacet structure of observed reconstructed integral images," J. Opt. Soc. Am. A 22, 597-603 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-S. Jang, B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29, 1230–1232 (2004). [CrossRef] [PubMed]
  2. H. Liao, M. Iwahara, N. Hata, T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004). [CrossRef] [PubMed]
  3. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, Wash., 2001).
  4. D. H. McMahon, H. J. Caulfield, “A technique for producing wide-angle holographic displays,” Appl. Opt. 9, 91–96 (1970). [CrossRef] [PubMed]
  5. P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, J.-P. Huignard, “Image reconstruction using electro-optic holography,” Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE Press, Piscataway, N.J., 2003), Vol. 1, pp. 172–173.
  6. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980). [CrossRef]
  7. M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).
  8. H. E. Ives, “Optical properties of a Lippmann lenticuled sheet,” J. Opt. Soc. Am. 21, 171–176 (1931). [CrossRef]
  9. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–76 (1968). [CrossRef]
  10. T. Okoshi, “Optimum design and depth resolution of lens-sheat and projection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971). [CrossRef] [PubMed]
  11. N. Davies, M. McCormick, L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988). [CrossRef] [PubMed]
  12. N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens array,” Opt. Eng. 33, 3624–3633 (1994). [CrossRef]
  13. F. Okano, H. Hoshino, J. Arai, I. Yayuma, “Real time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997). [CrossRef] [PubMed]
  14. J. Arai, F. Okano, H. Hoshino, I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998). [CrossRef]
  15. L. Erdmann, K. J. Gabriel, “High-resolution digital photography by use of a scanning microlens array,” Appl. Opt. 40, 5592–5599 (2001). [CrossRef]
  16. S. Kishk, B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003). [CrossRef] [PubMed]
  17. A. Stern, B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003). [CrossRef] [PubMed]
  18. J.-S. Jang, B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002). [CrossRef]
  19. J.-S. Jang, B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002). [CrossRef]
  20. J.-S. Jang, B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924–1926 (2003). [CrossRef] [PubMed]
  21. M. Martı́nez-Corral, B. Javidi, R. Martı́nez-Cuenca, G. Saavedra, “Integral imaging with improved depth of field by use of amplitude modulated microlens array,” Appl. Opt. 43, 5806–5813 (2004). [CrossRef]
  22. H. Choi, S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Multiple-viewing-zone integral imaging using dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003). [CrossRef] [PubMed]
  23. J. Arai, H. Hoshino, M. Okui, F. Okano, “Effects on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003). [CrossRef]
  24. H. Hoshino, F. Okano, H. Isono, I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998). [CrossRef]
  25. J.-H. Park, S.-W. Min, S. Jung, B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001). [CrossRef]
  26. J. Arai, M. Okui, M. Kobayashi, F. Okano, “Geometrical effects of positional errors in integral photography,” J. Opt. Soc. Am. A 21, 951–958 (2004). [CrossRef]
  27. R. Martı́nez-Cuenca, G. Saavedra, M. Martı́nez-Corral, B. Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237–5242 (2004). [CrossRef] [PubMed]
  28. J.-S. Jang, B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869–1870 (2003). [CrossRef]
  29. D. A. Atchinson, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000).
  30. M. P. Keating, Geometric, Physical, and Visual Optics (Butterworth-Heinemann, Oxford, UK, 1988).
  31. An exact calculation would give the reconstructed image as the convolution between O(x)and a properly scaled version of the self-convolution of function H∘(x; 0).Since the study of resolution is not the aim of this paper, the following calculations can be accurately performed by assuming nonsignificant differences between the object and the reconstructed image.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited