OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 4 — Apr. 1, 2005
  • pp: 662–671

Optical noise induced by Gaussian sources in Stokes parameter measurements

Avishay Eyal and Avi Zadok  »View Author Affiliations

JOSA A, Vol. 22, Issue 4, pp. 662-671 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel formalism for determining the source-induced noise in Stokes parameter measurements is derived for sources with Gaussian statistics. The formalism is based on a concise expression for the autocovariance functions of the Stokes parameters in terms of the second-order correlation properties of the optical field. At the output of an optical system, source-induced noise can result not only from the intensity fluctuations of the source but also from phase or polarization fluctuations. To describe the effect of the system, another formalism for the propagation of the second-order correlation properties of the optical field is derived. We apply the formalisms to analyze source-induced noise at the output of a birefringent medium, and in coherence-multiplexing networks.

© 2005 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.5430) Physical optics : Polarization

Original Manuscript: June 17, 2004
Manuscript Accepted: September 27, 2004
Published: April 1, 2005

Avishay Eyal and Avi Zadok, "Optical noise induced by Gaussian sources in Stokes parameter measurements," J. Opt. Soc. Am. A 22, 662-671 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606 (1987). [CrossRef] [PubMed]
  2. K. Takada, “Analysis of polarization dependence of optical low-coherence reflectometry using an active Faraday rotator,” J. Lightwave Technol. 21, 2916–2922 (2003). [CrossRef]
  3. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  4. B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).
  5. R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new evaluation technique,” Opt. Lett. 12, 158–160 (1987). [CrossRef] [PubMed]
  6. M. Farhadiroushan, R. C. Youngquist, “Polarimetric coherence multiplexing using high-birefringence optical-fiber sensors and short coherence sources,” Opt. Lett. 15, 786–788 (1990). [CrossRef] [PubMed]
  7. K. W. Chu, F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng. (Bellingham) 30, 337–344 (1991). [CrossRef]
  8. G. J. Pendock, D. D. Sampson, “Increasing the transmission capacity of coherence multiplexed communication systems by using differential detection,” IEEE Photonics Technol. Lett. 7, 1504–1506 (1995). [CrossRef]
  9. D. D. Sampson, G. J. Pendock, R. A. Griffin, “Photonic code-division multiple-access communications,” Fiber Integr. Opt. 16, 129–157 (1997). [CrossRef]
  10. P. Healy, “Dimensioning an optical-fiber spread-spectrum multiple-access communication system,” Opt. Lett. 12, 425–427 (1987). [CrossRef]
  11. E. D. J. Smith, P. T. Gough, D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett. 31, 1469–1470 (1995). [CrossRef]
  12. G. C. Gupta, P. J. Legg, D. Utamchandani, I. Andonovich, “Capacity bounding of coherence multiplexed local area networks due to interferometric noise,” IEE Proc. J Optoelectron. 144, 69–74 (1997). [CrossRef]
  13. K. Takada, “Noise in low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998). [CrossRef]
  14. K. Takada, A. Himeno, K. Yukimatsu, “Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991). [CrossRef]
  15. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  16. R. H. Wentworth, “Theoretical noise performance of coherence-multiplexed interferometric sensors,” J. Lightwave Technol. 7, 941–956 (1989). [CrossRef]
  17. M. Tur, E. Shafir, K. Blotekjaer, “Source-induced noise in optical systems driven by low-coherence sources,” J. Lightwave Technol. 8, 183–189 (1990). [CrossRef]
  18. Y. Weissman, “Analysis of optical radio-frequency noise produced by a linearly filtered Gaussian source,” J. Opt. Soc. Am. B 7, 127–133 (1990). [CrossRef]
  19. Y. Weissman, “Theory of source-induced noise in optical networks,” J. Opt. Soc. Am. B 7, 1791–1800 (1990). [CrossRef]
  20. Y. Weissman, “Optical noise in frequency-periodic networks,” J. Lightwave Technol. 12, 1660–1667 (1994). [CrossRef]
  21. G. J. Pendock, D. D. Sampson, “Capacity of coherence-multiplexed CDMA networks,” Opt. Commun. 143, 109–117 (1997). [CrossRef]
  22. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992). [CrossRef]
  23. D. P. Dave, T. Akkin, T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28, 1775–1777 (2003). [CrossRef] [PubMed]
  24. J. F. de Boer, T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002). [CrossRef] [PubMed]
  25. S. Jiao, L. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002). [CrossRef]
  26. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002). [CrossRef]
  27. M. Pircher, E. Goetzinger, R. Leitgeb, C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004). [CrossRef] [PubMed]
  28. R. A. Griffin, D. D. Sampson, D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” J. Lightwave Technol. 13, 1826–1837 (1995). [CrossRef]
  29. J. P. Gordon, H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
  30. A. Eyal, D. Kuperman, O. Dimenstein, M. Tur, “Polarization dependence of the intensity modulation transfer function of an optical system with PMD and PDL,” IEEE Photonics Technol. Lett. 14, 1515–1517 (2002). [CrossRef]
  31. S. Huard, Polarization of Light (Wiley, New York, 1997).
  32. R. H. Wentworth, “Optical noise in interferometric systems containing strongly unbalanced paths,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).
  33. R. A. Griffin, D. D. Sampson, D. A. Jackson, “Demonstration of data transmission using coherent correlation to reconstruct a coded pulse sequence,” IEEE Photonics Technol. Lett. 4, 513–515 (1992). [CrossRef]
  34. D. D. Sampson, R. A. Griffin, D. A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks,” J. Lightwave Technol. 12, 2001–2010 (1994). [CrossRef]
  35. J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, New York, 1995).
  36. G. J. Pendock, D. D. Sampson, “Noise in coherence-multiplexed optical fiber systems,” Appl. Opt. 36, 9536–9540 (1997). [CrossRef]
  37. B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol. 4, 1334–1351 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited