OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 4 — Apr. 1, 2005
  • pp: 724–733

Implementation of a graded-index medium by use of subwavelength structures with graded fill factor

Uriel Levy, Maziar Nezhad, Hyo-Chang Kim, Chia-Ho Tsai, Lin Pang, and Yeshaiahu Fainman  »View Author Affiliations

JOSA A, Vol. 22, Issue 4, pp. 724-733 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel configuration for the implementation of subwavelength-based graded-index devices. The proposed concept is based on the etching of one-dimensional subwavelength gratings into a high-index slab waveguide to achieve the desired effective index distribution. A graded-index profile can be achieved by gradually modifying the duty ratio of the grating along the horizontal axis, while the beam is confined in the vertical direction by the slab waveguide. On the basis of this concept, novel graded-index lenses and waveguides are both proposed and characterized numerically by use of finite-difference time-domain and finite-element analysis. The proposed devices can be used for guiding, imaging, optical signal processing, mode matching, coupling, and other applications while offering the intrinsic advantages of on-chip integration such as miniaturization, eliminating the need to align each component separately, and compatibility with standard microfabrication techniques for manufacturability.

© 2005 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: June 8, 2004
Revised Manuscript: September 29, 2004
Manuscript Accepted: September 29, 2004
Published: April 1, 2005

Uriel Levy, Maziar Nezhad, Hyo-Chang Kim, Chia-Ho Tsai, Lin Pang, and Yeshaiahu Fainman, "Implementation of a graded-index medium by use of subwavelength structures with graded fill factor," J. Opt. Soc. Am. A 22, 724-733 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Richter, P. C. Sun, F. Xu, Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995). [CrossRef] [PubMed]
  2. F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer, Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995). [CrossRef] [PubMed]
  3. R. Tyan, P. C. Sun, A. Scherer, Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings,” Opt. Lett. 21, 761–763 (1996). [CrossRef] [PubMed]
  4. R. Tyan, A. Salvekar, Cheng, A. Scherer, F. Xu, P. C. Sun, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997). [CrossRef]
  5. C. Gu, P. Yeh, “Form birefringence dispersion in periodic layered media,” Opt. Lett. 21, 504–506 (1996). [CrossRef] [PubMed]
  6. U. Levy, Y. Fainman, “Dispersion properties of inhomogeneous nanostructures,” J. Opt. Soc. Am. A 21, 881–889 (2004). [CrossRef]
  7. W. Nakagawa, R. Tyan, Y. Fainman, “Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation,” J. Opt. Soc. Am. A 19, 1919–1928 (2002). [CrossRef]
  8. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996). [CrossRef] [PubMed]
  9. H. Kikuta, Y. Ohira, K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997). [CrossRef] [PubMed]
  10. G. Nordin, P. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express5, 163–168 (1999), www.opticsexpress.org . [CrossRef] [PubMed]
  11. F. T. Chen, H. G. Craighead, “Diffractive phase elements based on two-dimensional artificial dielectrics,” Opt. Lett. 20, 121–123 (1995). [CrossRef] [PubMed]
  12. J. N. Mait, A. Scherer, O. Dial, D. W. Prather, X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25, 381–383 (2000). [CrossRef]
  13. D. W. Prather, J. Mait, M. S. Mirotzniki, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
  14. F. Xu, R. Tyan, P. C. Sun, Y. Fainman, C. Cheng, A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996). [CrossRef] [PubMed]
  15. U. Levy, C. H. Tsai, L. Pang, Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720 (2004). [CrossRef] [PubMed]
  16. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  17. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  18. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  19. D. W. Parther, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  20. K. D. Paulsen, “Finite-element solution of Maxwell’s equations with Helmholtz forms,” J. Opt. Soc. Am. A 11, 1434–1444 (1994). [CrossRef]
  21. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform,” Appl. Opt. 33, 6188–6193 (1994). [CrossRef] [PubMed]
  22. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  23. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000). [CrossRef]
  24. E. Chow, S. Y. Lin, S. G. Johnson, P. B. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature (London) 407, 983–986 (2000). [CrossRef]
  25. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096–10099 (1998). [CrossRef]
  26. W. Lijun, M. Mazilu, T. F. Krauss, “Beam steering in planar-photonic crystals: from superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003). [CrossRef]
  27. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004). [CrossRef] [PubMed]
  28. O. Montalien, V. Brioude, A. Tishchenko, O. M. Parriaux, “Optimization of the strength of a graded-index slab waveguide grating,” in Advances in Optical Thin Films, C. Amra, N. Karsev, H. A. Macleod, eds., Proc. SPIE5250, 609–618 (2004). [CrossRef]
  29. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  30. R. R. Boye, R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000). [CrossRef]
  31. P. Lalanne, D. L. Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450–458 (1997). [CrossRef]
  32. J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207, 35–39 (2002). [CrossRef]
  33. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss and gain variation,” Appl. Opt. 4, 1562–1569 (1965). [CrossRef]
  34. We define the polarization with respect to the periodic structure, i.e., E=Ey^for TE and H=Hy^for TM. This is in opposition to the standard definition used in waveguide theory.
  35. N. I. Petrov, “Focusing of beams into subwavelength area in an inhomogeneous medium,” Opt. Express9, 658–673 (2001), www.opticsexpress.org . [CrossRef] [PubMed]
  36. C. Giaconia, R. Torrini, S. K. Murad, C. D. W. Wilkinson, “Artificial dielectric optical structures: a challenge for nanofabrication,” J. Vac. Sci. Technol. B 16, 3903–3905 (1998). [CrossRef]
  37. W. J. Zubrzycki, G. A. Vawter, J. R. Wendt, “High-aspect-ratio nanophotonic components fabricated by C12 reactive ion beam etching,” J. Vac. Sci. Technol. B 17, 2740–2744 (1999). [CrossRef]
  38. K. Avary, J. P. Reithmaier, F. Klopf, T. Happ, M. Kamp, A. Forchel, “Deeply etched two-dimensional photonic crystals fabricated on GaAs/AlGaAs slab waveguides by using chemical assisted ion beam etching,” Microelectron. Eng. 61–62, 875–880 (2002). [CrossRef]
  39. H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, Shigehisa Arai, “1.5-μm wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1146–1152 (2003). [CrossRef]
  40. Z. Yu, L. Chen, W. Wu, H. Ge, S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003). [CrossRef]
  41. M. V. Kotlyar, L. O’Faolain, R. Wilson, T. F. Krauss, “High-aspect-ratio chemically assisted ion beam etching for photonic crystals using a high beam voltage-current ratio,” J. Vac. Sci. Technol. B 22, 1788–1791 (2004). [CrossRef]
  42. D. Keil, E. Anderson, “Characterization of reactive ion etch lag scaling,” J. Vac. Sci. Technol. B 19, 2082–2088 (2001). [CrossRef]
  43. S. Panda, R. Ranade, G. S. Mathad, “Etching high aspect ratio silicon trenches,” J. Electrochem. Soc. 150, G612–G616 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited