OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 4 — Apr. 1, 2005
  • pp: 734–744

Time-resolved optical transients in tetragonal BaTiO3

Mike Melnichuk and Lowell T. Wood  »View Author Affiliations

JOSA A, Vol. 22, Issue 4, pp. 734-744 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (849 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present and analyze the room temperature (T=23.5 °C) time behavior of the transmitted intensities of polarized light passing through an unclamped (100)-type single crystal of barium titanate (BaTiO3) when subject to a time-dependent, externally applied electric field. To the authors’ knowledge, this is the first reported observation and analysis of such time-resolved optical transients. According to a previous [ J. Opt. Soc. Am. A 22, 377 ( 2005)] observation by the authors, this original optical technique can, in principle, be used on 18 out of 20 noncentrosymmetric crystal point groups where the first-order (Pockels) and second-order (Kerr) electro-optic effects coexist. Because of its nondestructive nature, this novel optical method would be a useful tool in other fields of condensed-matter physics in which time-behavior observation and characterization of certain physical parameters of crystals are important.

© 2005 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.2260) Materials : Ferroelectrics
(190.3270) Nonlinear optics : Kerr effect
(230.4110) Optical devices : Modulators
(260.1180) Physical optics : Crystal optics

Mike Melnichuk and Lowell T. Wood, "Time-resolved optical transients in tetragonal BaTiO3," J. Opt. Soc. Am. A 22, 734-744 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Melnichuk, L. T. Wood, “Method for measuring off-diagonal Kerr coefficients by using polarized light transmission,” J. Opt. Soc. Am. A 22, 377–384 (2005). [CrossRef]
  2. F.-S. Chen, “Modulators for optical communications,” Proc. IEEE 58, 1440–1457 (1970). [CrossRef]
  3. A. R. Johnston, J. M. Weingart, “Determination of the low-frequency linear electro-optic effect in tetragonal BaTiO3,” J. Opt. Soc. Am. 55, 828–834 (1965). [CrossRef]
  4. I. P. Kaminow, An Introduction to Electrooptic Devices (Academic, New York, 1974).
  5. C. C. Davis, Lasers and Electro-Optics (Cambridge U. Press, Cambridge, UK, 1996).
  6. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, Hoboken, N.J., 2003).
  7. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, New York, 1997).
  8. R. D. Guenther, Modern Optics (Wiley, Hoboken, N.J., 1990).
  9. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, Hoboken, N.J., 1991). [CrossRef]
  10. K. Iizuka, Elements of Photonics (Wiley, Hoboken, N.J., 2002).
  11. E. Hecht, Optics, 4th ed. (Pearson Addison-Wesley, Boston, Mass., 2001).
  12. M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, Hoboken, N.J., 1986).
  13. G. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, New York, 1989).
  14. F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, New York, 1962). (Reprint, Dover, New York, 1993).
  15. J. C. Burfoot, Ferroelectrics—An Introduction to the Physical Principles (Van Nostrand, London, 1967).
  16. M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, UK, 1977).
  17. J. C. Burfoot, G. W. Taylor, Polar Dielectrics and Their Applications (MacMillan, London, 1979).
  18. L. O. Chua, C. A. Desoer, E. S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, New York, 1987).
  19. D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall, Englewood Cliffs, N.J., 1999).
  20. M. J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, Fla., 2003).
  21. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, New York, 2003).
  22. D. Mayerhofer, “Transition to the ferroelectric state in barium titanate,” Phys. Rev. 112, 413–423 (1958). [CrossRef]
  23. W. Haas, R. Johannes, P. Cholet, “Light beam deflection using the Kerr effect in single crystal prisms of BaTiO3,” Appl. Opt. 3, 988–989 (1964). [CrossRef]
  24. V. É. Perfilova, A. S. Sonin, “The electrooptic properties of single crystals of barium titanate,” Sov. Phys. Solid State 8, 82–84 (1966).
  25. A. S. Sonin, V. É. Perfilova, “Electrooptical properties of barium titanate in the paraelectric phase,” Sov. Phys. Crystallogr. 14, 419–420 (1969).
  26. K. H. Hellwege, Landolt-Börnstein, New Series III/2 (Springer-Verlag, Berlin, 1969).
  27. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, New York, 2001).
  28. M. E. Drougard, D. R. Young, “Domain clamping effect in barium titanate single crystals,” Phys. Rev. 94, 1561–1564 (1954). [CrossRef]
  29. M. T. I. Corporation, www.mticrystal.com .
  30. E. Burcsu, G. Ravichandran, K. Bhattacharya, “Electro-mechanical behaviour of 90-degree domain motion in barium titanate single crystals,” in Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, C. S. Lynch, ed., Proc. SPIE4333, 121–130 (2001). [CrossRef]
  31. E. Burcsu, “Investigations of large strain actuation in barium titanate,” Ph.D. thesis (California Institute of Technology, Pasadena, Calif., 2001), http://etd.caltech.edu/etd/available/etd-10232001-192042/ .
  32. J. P. Boyeaux, F. M. Michael-Calendini, “Small polaron interpretation of BaTiO3transport properties from drift mobility measurements,” J. Phys. C 12, 545–556 (1979). [CrossRef]
  33. S. R. Gilbert, L. A. Wills, B. W. Wessels, J. L. Schindler, J. A. Thomas, C. R. Kanewurf, “Electrical transport properties of epitaxial BaTiO3thin films,” J. Appl. Phys. 80, 969–977 (1996). [CrossRef]
  34. W. Känzig, “Space charge layer near the surface of a ferroelectric,” Phys. Rev. 98, 549–550 (1955). [CrossRef]
  35. S. Triebwasser, “Space charge fields in BaTiO3,” Phys. Rev. 118, 100–105 (1960). [CrossRef]
  36. A. Branwood, O. H. Hughes, J. D. Hurd, R. H. Tredgold, “Evidence for space charge conduction in barium titanate single crystals,” Proc. Phys. Soc. London 79, 1161–1165 (1962). [CrossRef]
  37. M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals (Kluwer-Consultants Bureau, Norwell, Mass., 1964). [CrossRef]
  38. E. K. H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge U. Press, Cambridge, UK, 1990).
  39. V. S. Boyko, R. I. Garber, A. M. Kossevich, Reversible Crystal Plasticity (AIP Press, New York, 1994).
  40. R. R. Newton, A. J. Ahearn, K. G. McKay, “Observation of the ferro-electric Barkhausen effect in barium titanate,” Phys. Rev. 75, 103–106 (1949). [CrossRef]
  41. A. G. Chynoweth, “Barkhausen pulses in barium titanate,” Phys. Rev. 110, 1316–1332 (1958). [CrossRef]
  42. R. C. Miller, “Some experiments on the motion of 180° domain walls in BaTiO3,” Phys. Rev. 111, 736–739 (1958). [CrossRef]
  43. A. G. Chynoweth, “Effect of space charge fields on polarization reversal and the generation of Barkhausen pulses in barium titanate,” J. Appl. Phys. 30, 280–285 (1959). [CrossRef]
  44. V. M. Rudyak, “The Barkhausen effect,” Sov. Phys. Usp. 13, 461–479 (1971). [CrossRef]
  45. V. M. Rudyak, A. Yu. Kudzin, T. V. Panchenko, “Barkhausen jumps and stabilization of the spontaneous polarization of single crystals of BaTiO3,” Sov. Phys. Solid State 14, 2112–2113 (1973).
  46. S. A. Flerova, Yu. I. Samchenko, V. M. Gorbenko, “Light emission during pulsed repolarization of deformed BaTiO3 crystals,” Sov. Phys. Solid State 23, 1624–1625 (1981).
  47. V. V. Belov, O. Yu. Serdobol’skaya, “Emission of sound associated with polarization reversal in a ferroelectric crystal,” Sov. Phys. Solid State 26, 868–870 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited