OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 5 — May. 1, 2005
  • pp: 917–927

Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms

Bryan M. Hennelly and John T. Sheridan  »View Author Affiliations

JOSA A, Vol. 22, Issue 5, pp. 917-927 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By use of matrix-based techniques it is shown how the space–bandwidth product (SBP) of a signal, as indicated by the location of the signal energy in the Wigner distribution function, can be tracked through any quadratic-phase optical system whose operation is described by the linear canonical transform. Then, applying the regular uniform sampling criteria imposed by the SBP and linking the criteria explicitly to a decomposition of the optical matrix of the system, it is shown how numerical algorithms (employing interpolation and decimation), which exhibit both invertibility and additivity, can be implemented. Algorithms appearing in the literature for a variety of transforms (Fresnel, fractional Fourier) are shown to be special cases of our general approach. The method is shown to allow the existing algorithms to be optimized and is also shown to permit the invention of many new algorithms.

© 2005 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(080.2730) Geometric optics : Matrix methods in paraxial optics
(100.2000) Image processing : Digital image processing
(200.2610) Optics in computing : Free-space digital optics
(200.3050) Optics in computing : Information processing
(200.4560) Optics in computing : Optical data processing
(200.4740) Optics in computing : Optical processing

Original Manuscript: August 16, 2004
Manuscript Accepted: October 11, 2004
Published: May 1, 2005

Bryan M. Hennelly and John T. Sheridan, "Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms," J. Opt. Soc. Am. A 22, 917-927 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Erseghe, P. Kraniauskas, G. Cariolaro, “Unified fractional Fourier transform and sampling theorem,” IEEE Trans. Signal Process. 47, 3419–3423 (1999). [CrossRef]
  2. H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996). [CrossRef]
  3. J. Garcia, D. Mas, R. G. Dorsch, “Fractional Fourier transform calculation through the fast Fourier transform algorithm,” Appl. Opt. 35, 7013–7018 (1996). [CrossRef]
  4. F. J. Marinho, L. M. Bernardo, “Numerical calculation of fractional Fourier transforms with a single fast Fourier transform algorithm,” J. Opt. Soc. Am. A 15, 2111–2116 (1998). [CrossRef]
  5. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999). [CrossRef]
  6. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116, 43–48 (1995). [CrossRef]
  7. D. Mas, J. Perez, C. Hernandez, C. Vazquez, J. J. Miret, C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003). [CrossRef]
  8. D. Mendlovic, Z. Zalevsky, N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44, 407–414 (1997). [CrossRef]
  9. W. T. Rhodes, “Light tubes, Wigner diagrams and optical signal propagation simulation,” in Optical Information Processing: A Tribute to Adolf Lohmann, H. J. Caulfield, ed. (SPIE Press, Bellingham, Wash., 2002), pp. 343–356.
  10. W. T. Rhodes, “Numerical simulation of Fresnel-regime wave propagation: the light tube model,” in Wave-Optical Systems Engineering, F. Wyrowski, ed., Proc. SPIE4436, 21–26 (2001). [CrossRef]
  11. X. Deng, B. Bihari, J. Gang, F. Zhao, R. T. Chen, “Fast algorithm for chirp transforms with zooming-in ability and its applications,” J. Opt. Soc. Am. A 17, 762–771 (2000). [CrossRef]
  12. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  13. M. J. Bastiaans, “Application of the Wigner distribution function in optics,” in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbrauker and F. Hlawatsch, eds. (Elsevier Science, Amsterdam, 1997).
  14. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  15. A. W. Lohmann, “Image rotation, Wigner rotation and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  16. H. M. Ozaktas, Z. Zalevsky, M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, Hoboken, N.J., 2001).
  17. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996). [CrossRef]
  18. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  19. S. Abe, J. T. Sheridan and , “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach,” J. Phys. A 27, 4179–4187 (1994);Corrigenda, 7937–7938 (1994). [CrossRef]
  20. S. Abe, J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994). [CrossRef] [PubMed]
  21. J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965). [CrossRef]
  22. R. E. Crochiere, L. R. Rabiner, “Interpolation and decimation of digital signals—A tutorial review,” Proc. IEEE 69, 300–331 (1981). [CrossRef]
  23. M. Nazarathy, J. Shamir, “First-order optics—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982). [CrossRef]
  24. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974). [CrossRef]
  25. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977).
  26. Z. Zalevsky, D. Mendlovic, A. W. Lohmann, “Understanding superresolution in Wigner space,” J. Opt. Soc. Am. A 17, 2422–2429 (2000). [CrossRef]
  27. D. Mendlovic, A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997). [CrossRef]
  28. D. Mendlovic, A. W. Lohmann, Z. Zalevsky, “Space–bandwidth product adaptation and its application to superresolution: examples,” J. Opt. Soc. Am. A 14, 563–567 (1997). [CrossRef]
  29. B. M. Hennelly, J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited