OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 5 — May. 1, 2005
  • pp: 966–977

Reflective liquid-crystal displays with asymmetric incident and exit angles

Zhibing Ge, Thomas X. Wu, Xinyu Zhu, and Shin-Tson Wu  »View Author Affiliations


JOSA A, Vol. 22, Issue 5, pp. 966-977 (2005)
http://dx.doi.org/10.1364/JOSAA.22.000966


View Full Text Article

Enhanced HTML    Acrobat PDF (324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The 2 × 2 matrix methods are extended to calculate the optical behaviors of reflective liquid-crystal displays with asymmetric incident and exit angles. Both the unfolding method and the backward-eigenwave method are employed to derive the 2 × 2 matrix representations. The simulation results for symmetric incident and exit angles from these two methods are identical and agree well with those obtained from the 4 × 4 matrix method when the air–panel surface reflections are neglected. Further, the derived 2 × 2 matrix methods are applied to the asymmetric cases with different incident and exit angles. The simulated results on the normally black vertical alignment and normally white mixed-mode twisted nematic reflective displays show reasonably good agreement with the reported experimental data. In addition, a rubbing effect related to contrast values is observed and analyzed in asymmetric reflective cases. We also find that this effect has a significant influence on the contrast ratios once the difference between the incident and exit angles becomes large.

© 2005 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices

History
Original Manuscript: August 20, 2004
Revised Manuscript: October 13, 2004
Manuscript Accepted: November 8, 2004
Published: May 1, 2005

Citation
Zhibing Ge, Xinyu Zhu, Shin-Tson Wu, and Thomas X. Wu, "Reflective liquid-crystal displays with asymmetric incident and exit angles," J. Opt. Soc. Am. A 22, 966-977 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-5-966


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. T. Wu, D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
  2. M. F. Schiekel, K. Fahrenschon, “Deformation of nematic liquid crystals with vertical orientation in electrical fields,” Appl. Phys. Lett. 19, 391–393 (1971). [CrossRef]
  3. S. T. Wu, C. S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68, 1455–1457 (1996). [CrossRef]
  4. S. Teitler, B. W. Henvis, “Refraction in stratified, anisotropic media,” J. Opt. Soc. Am. 60, 830–834 (1970). [CrossRef]
  5. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4 matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  6. I. Abdulhalim, L. Benguigui, R. Weil, “Selective reflection by helicoidal liquid crystals. Results of an exact calculation using the 4∗4 characteristic matrix method,” J. Phys. Colloq. 46, 815–825 (1985). [CrossRef]
  7. I. Abdulhalim, R. Weil, L. Benguigui, “Dispersion and attenuation of the eigenwaves for light propagation in helicoidal liquid crystals,” Liq. Cryst. 1, 155–167 (1986). [CrossRef]
  8. H. Wohler, G. Hass, M. Fritsch, D. A. Mlynski, “Faster 4×4 matrix method for uniaxial inhomogeneous media,” J. Opt. Soc. Am. A 5, 1554–1557 (1988). [CrossRef]
  9. K. Eidner, G. Mayer, M. Schmidt, H. Schmiedel, “Optics in stratified media-the use of optical eigenmodes of uniaxial crystal in the 4×4 matrix formalism,” Mol. Cryst. Liq. Cryst. 172, 191–200 (1989).
  10. C. J. Chen, A. Lien, M. I. Nathan, “4×4 and 2×2 matrix formulations for the optics in stratified and biaxial media,” J. Opt. Soc. Am. A 14, 3125–3133 (1997). [CrossRef]
  11. I. Abdulhalim, “Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,” J. Opt. A, Pure Appl. Opt. 1, 646–653 (1999). [CrossRef]
  12. S. Stallinga, “Berreman 4×4 matrix method for reflective liquid crystal displays,” J. Appl. Phys. 85, 3023–3031 (1999). [CrossRef]
  13. C. L. Kuo, C. K. Wei, S. T. Wu, C. S. Wu, “Reflective direct-view display using a mixed-mode twisted nematic cell,” Jpn. J. Appl. Phys., Part 1 36, 1077–1080 (1997). [CrossRef]
  14. P. G. De Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford, London, 1995).
  15. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72, 507–513 (1982). [CrossRef]
  16. C. Gu, P. Yeh, “Extended Jones matrix method II,” J. Opt. Soc. Am. A 10, 966–973 (1993). [CrossRef]
  17. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57, 2767–2769 (1990). [CrossRef]
  18. A. Lien, C. J. Chen, “A new 2×2 matrix representation for twisted nematic liquid crystal displays at oblique incidence,” Jpn. J. Appl. Phys., Part 1 35, L1200–1203 (1996). [CrossRef]
  19. A. Lien, “A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997). [CrossRef]
  20. F. H. Yu, H. S. Kwok, “Comparison of extended Jones matrices for twisted nematic liquid-crystal displays at oblique angles of incidence,” J. Opt. Soc. Am. A 16, 2772–2780 (1999). [CrossRef]
  21. I. Abdulhalim, “Exact 2×2 matrix method for the transmission and reflection at the interface between two arbitrarily oriented biaxial crystals,” J. Opt. A, Pure Appl. Opt. 1, 655–661 (1999). [CrossRef]
  22. I. Abdulhalim, “2×2 Matrix summation method for multiple reflections and transmissions in a biaxial slab between two anisotropic media,” Opt. Commun. 163, 9–14 (1999). [CrossRef]
  23. M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2×2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990). [CrossRef]
  24. E. Cojocaru, “Generalized Abel’s relations for an anisotropic thin film of an arbitrary dielectric tensor,” Appl. Opt. 36, 2825–2829 (1997). [CrossRef] [PubMed]
  25. S. Pancharatnam, “Achromatic combination of birefringent plates. II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci., Sect. A 41, 137–144 (1955).
  26. D. L. Ting, W. C. Chang, C. Y. Liu, J. W. Shiu, C. J. Wen, C. H. Chao, L. S. Chuang, C. C. Chang, “A high brightness and high contrast reflective LCD with micro slant reflector (MSR),” SID Int. Symp. Digest Tech. Papers 30, 954–957 (1999). [CrossRef]
  27. N. Sugiura, K. Tashiro, K. Ohmuro, Y. Koike, K. Okamoto, “A novel vertically aligned reflective-color TFT LCD with high contrast ratio,” SID Int. Symp. Digest Tech. Papers 33, 1386–1389 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited