OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 5 — May. 1, 2005
  • pp: 984–991

Simple interferometric technique for generation of a radially polarized light beam

Nicolas Passilly, Renaud de Saint Denis, Kamel Aït-Ameur, François Treussart, Rolland Hierle, and Jean-François Roch  »View Author Affiliations


JOSA A, Vol. 22, Issue 5, pp. 984-991 (2005)
http://dx.doi.org/10.1364/JOSAA.22.000984


View Full Text Article

Enhanced HTML    Acrobat PDF (630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical and experimental investigation of an interferometric technique for converting a linearly polarized Gaussian beam into a radially polarized doughnut beam. The experimental setup accomplishes the coherent summation of two orthogonally polarized TEM 01 and TEM 10 beams that are obtained from the transformation of a TEM 00 beam by use of a simple binary diffractive optical element. We have shown that the degree of radial polarization is maximum at a given distance from the interferometer output port that depends on the diameter of the incident beam at the interferometer input port.

© 2005 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(260.3160) Physical optics : Interference
(260.5430) Physical optics : Polarization

History
Original Manuscript: August 27, 2004
Revised Manuscript: November 19, 2004
Manuscript Accepted: December 2, 2004
Published: May 1, 2005

Citation
Nicolas Passilly, François Treussart, Rolland Hierle, Renaud de Saint Denis, Kamel Aït-Ameur, and Jean-François Roch, "Simple interferometric technique for generation of a radially polarized light beam," J. Opt. Soc. Am. A 22, 984-991 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-5-984


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959). [CrossRef]
  2. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  3. D. P. Biss, T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490–497 (2001). [CrossRef] [PubMed]
  4. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001). [CrossRef]
  5. Q. Zhan, J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002). [CrossRef] [PubMed]
  6. V. G. Niziev, A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999). [CrossRef]
  7. A. V. Nesterov, V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000). [CrossRef]
  8. B. Sick, B. Hecht, L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000). [CrossRef] [PubMed]
  9. L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef] [PubMed]
  10. J. Azoulay, A. Débarre, R. Jaffiol, P. Tchénio, “Original tools for single-molecule spectroscopy,” Single Mol. 2, 241–249 (2001). [CrossRef]
  11. F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002). [CrossRef] [PubMed]
  12. C. Varin, M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002). [CrossRef]
  13. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  14. K. T. Gahagan, G. A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16533–537 (1999). [CrossRef]
  15. K. S. Youngworth, T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds., Proc. SPIE3919, 75–85 (2000).
  16. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). [CrossRef] [PubMed]
  17. M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef] [PubMed]
  18. Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal strip grating,” Appl. Phys. Lett. 79, 1587–1589 (2001). [CrossRef]
  19. R. Oron, S. Blit, N. Davidson, A. A. Friesem, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000). [CrossRef]
  20. D. J. Armstrong, M. C. Philips, A. V. Smith, “Generation of radially polarized beams with an image-rotating resonator,” Appl. Opt. 42, 3550–3554 (2003). [CrossRef] [PubMed]
  21. H. Kogelnik, T. Li, “Laser beams and resonator,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  22. R. Bourouis, K. Aït-Ameur, H. Ladjouze, “Optimization of the Gaussian beam flattening using a phase-plate,” J. Mod. Opt. 44, 1417–1427 (1997). [CrossRef]
  23. K. Aït-Ameur, F. Sanchez, M. Brunel, “High transverse mode discrimination in apertured resonators using diffractive binary optics,” Opt. Commun. 184, 73–78 (2000). [CrossRef]
  24. K. Aït-Ameur, “Effects of a phase aperture on the fundamental mode of a hard-apertured cavity,” J. Mod. Opt. 49, 1157–1168 (2002). [CrossRef]
  25. M. Fromager, K. Aït-Ameur, “Transformation of an elliptic into a circular beam using a diffractive binary optic,” Opt. Commun. 190, 45–49 (2001). [CrossRef]
  26. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited