OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 6 — Jun. 1, 2005
  • pp: 1042–1047

Mie resonances of dielectric spheres in face-centered cubic photonic crystals

Cédric Vandenbem and Jean Pol Vigneron  »View Author Affiliations

JOSA A, Vol. 22, Issue 6, pp. 1042-1047 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With use of plane waves as a basis for the band-structure calculation of a periodic assembly of highly refringent microspheres, it can be shown that resonance-mode frequencies of isolated dielectric spheres show up in the band structures. The strongly localized bands provided by the photonic-crystal analysis is compared with exact calculations made in spherical symmetry for an isolated microsphere. This comparison sheds some light on the effectiveness of the methods based on the description of mode coupling and, in particular, on the validity of tight-binding approaches of the description of photonic band structures. In addition, examining the effect of modifying the distance separating the spheres in the lattice, makes it easy to visualize the overlap between the modes of individual spheres. Thus quantitative information is provided on the geometry needed to feed energy into low-angular-momentum morphology-dependent resonances from a sharp source of the evanescent field and on the lifetime of these modes, when the resonances are disturbed by the proximity of a dielectric object of similar radius.

© 2005 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(290.4020) Scattering : Mie theory

Original Manuscript: November 17, 2004
Manuscript Accepted: December 10, 2004
Published: June 1, 2005

Cédric Vandenbem and Jean Pol Vigneron, "Mie resonances of dielectric spheres in face-centered cubic photonic crystals," J. Opt. Soc. Am. A 22, 1042-1047 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1995).
  2. E. Lidorikis, M. M. Sigalas, E. N. Economou, C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998). [CrossRef]
  3. M. Kafesaki, E. N. Economou, M. M. Sigalas, “Elastic waves in periodic composite materials,” in Photonic Band Gap Materials (Kluwer, Dordrecht, The Netherlands, 1996), p. 143 . [CrossRef]
  4. S. Datta, C. T. Chan, K. M. Ho, C. M. Soukoulis, E. N. Economou, “Photonic band gaps in periodic dielectric structures: relation to the single-scatterer Mie resonances,” in Photonic Band Gaps and Localization (Plenum, New York, 1993), p. 289. [CrossRef]
  5. J. P. Albert, C. Jouanin, D. Cassagne, D. Monge, “Photonic crystal modelling using a tight-binding Wannier function method,” Opt. Quantum Electron. 34, 251–263 (2002). [CrossRef]
  6. J. P. Albert, C. Jouanin, D. Cassagne, D. Bertho, “Generalized Wannier function method for two-dimensional photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000). [CrossRef]
  7. K. Bush, M. Frank, A. Garcia-Martin, D. Hermann, S. F. Mingaleev, M. Schillinger, L. Tkeshelashvili, “A solid state theoretical approach to the optical properties of photonic crystals,” Phys. Status Solidi A 197, 637–647 (2003). [CrossRef]
  8. G. Mie, “Beitrage zur optik trüber medien, spellzien kolloïdaler metallosungen,” Ann. Phys. 25, 377–452 (1908). [CrossRef]
  9. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  10. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, Princeton N. J., 1995).
  11. J. E. Lennard-Jones, “The electronic structure of some diatomic molecules,” Trans. Faraday Soc. 25, 668–686 (1929). [CrossRef]
  12. A. van Blaaderen, “Opals in a new light,” Science 282, 887–888 (1998). [CrossRef]
  13. K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of photonic gaps in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef] [PubMed]
  14. S. A. Maier, P. G. Kik, H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited