OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 6 — Jun. 1, 2005
  • pp: 1086–1092

Superresolution imaging from limited-aperture optical diffracted field data

Anthony J. Devaney and Pengyi Guo  »View Author Affiliations


JOSA A, Vol. 22, Issue 6, pp. 1086-1092 (2005)
http://dx.doi.org/10.1364/JOSAA.22.001086


View Full Text Article

Acrobat PDF (362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of an optical waveguide to attain a numerical aperture of unity in computational coherent optical imaging applications is described. It is shown that for the case of a one-dimensional (slitlike) object radiating into an optical waveguide consisting of two plane-parallel mirrors the complex field amplitude across any cross section of the waveguide contains sufficient information to reconstruct the object’s transmittance function with a numerical aperture of unity. We include the derivation of an inversion algorithm for performing the object reconstruction as well as computer simulations of the procedure.

© 2005 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(100.3020) Image processing : Image reconstruction-restoration
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy
(290.3200) Scattering : Inverse scattering

Citation
Anthony J. Devaney and Pengyi Guo, "Superresolution imaging from limited-aperture optical diffracted field data," J. Opt. Soc. Am. A 22, 1086-1092 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-6-1086


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Abbé, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. f. Mikroskopiscke Anat. 9, 413–668 (1873). [CrossRef]
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  3. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge UK, 1999).
  4. E. G. Williams, J. D. Maynard, “Holographic imaging without the wavelength resolution limit,” Phys. Rev. Lett. 45, 554–557 (1980). [CrossRef]
  5. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  6. R. A. Gonsalves, “Phase retrieval from modulus data,” J. Opt. Soc. Am. 66, 961–964 (1976). [CrossRef]
  7. J. R. Fienup, “Phase retrieval algorithm: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  8. A. J. Devaney, M. H. Maleki, “Phase retrieval and intensity-only reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 10, 1086–1092 (1993). [CrossRef]
  9. I. Yamaguchi, J. Kato, S. Ohta, J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  10. P. Guo, A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857–859 (2004). [CrossRef] [PubMed]
  11. A. J. Devaney, P. Guo, “Digital holographic microscopy,” in Tribute to Emil Wolf: Science and Engineering Legacy of Physical Optics, T. P. Jannson, ed. SPIE press monograph, ISBN 0-8194-5441-9 (SPIE Press, Bellingham, Wash., 2004), pp. 179–200 .
  12. A. A. Egorov, “Theory of waveguide optical microscopy,” Laser Phys. 8, 536–540 (1998).
  13. J. C. Wendoloski, “The reconstruction of a spatially incoherent two-dimensional source in an acoustically rigid rectangular cavity,” J. Acoust. Soc. Am. 107, 51–69 (2000). [CrossRef] [PubMed]
  14. G. A. Athanassoulis, “Three-dimensional acoustic scattering from a penetrable layered cylindrical obstacle in a horizontally stratified ocean waveguide,” J. Acoust. Soc. Am. 107, 2406–2417 (2000). [CrossRef] [PubMed]
  15. P. Roux, M. Fink, “Time reversal in a waveguide: study of the temporal and spatial focusing,” J. Acoust. Soc. Am. 107, 2418–2429 (2000). [CrossRef] [PubMed]
  16. J. A. Fawcett, “A method of images for a penetrable acoustic waveguide,” J. Acoust. Soc. Am. 113, 194–204 (2003). [CrossRef] [PubMed]
  17. R. M. Shubair, Y. L. Chow, “A simple and accurate complex image interpretation of vertical antennas present in contiguous dielectric half spaces,” IEEE Trans. Antennas Propag. 41, 806–812 (1993) [CrossRef]
  18. A. D. Puckett, M. L. Peterson, “A time-reversal mirror in a solid circular waveguide using a single, time-reversal element,” ARLO 4, 31–36 (2003). [CrossRef]
  19. M. H. Maleki, A. J. Devaney, A. Schatzberg, “Tomographic reconstruction from optical scattered intensities,” J. Opt. Soc. Am. A 9, 1356–1363 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited