OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 6 — Jun. 1, 2005
  • pp: 1106–1114

Adaptive finite-element method for diffraction gratings

Gang Bao, Zhiming Chen, and Haijun Wu  »View Author Affiliations

JOSA A, Vol. 22, Issue 6, pp. 1106-1114 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A second-order finite-element adaptive strategy with error control for one-dimensional grating problems is developed. The unbounded computational domain is truncated to a bounded one by a perfectly-matched-layer (PML) technique. The PML parameters, such as the thickness of the layer and the medium properties, are determined through sharp a posteriori error estimates. The adaptive finite-element method is expected to increase significantly the accuracy and efficiency of the discretization as well as reduce the computation cost. Numerical experiments are included to illustrate the competitiveness of the proposed adaptive method.

© 2005 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(200.0200) Optics in computing : Optics in computing

Original Manuscript: October 19, 2004
Manuscript Accepted: December 10, 2004
Published: June 1, 2005

Gang Bao, Zhiming Chen, and Haijun Wu, "Adaptive finite-element method for diffraction gratings," J. Opt. Soc. Am. A 22, 1106-1114 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Nevière, G. Cerutti-Maori, M. Cadilhac, “Sur une nouvelle méthode de résolution du problème de la diffraction d’une onde plane par un réseau infiniment conducteur,” Opt. Commun. 3, 48–52 (1971). [CrossRef]
  2. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  3. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  4. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982). [CrossRef]
  5. L. Li, “Oblique-coordinate-system-based Chandezon method for modeling one-dimensionally periodic, multilayer, inhomogeneous, anisotropic gratings,” J. Opt. Soc. Am. A 16, 2521–2531 (1999). [CrossRef]
  6. O. P. Bruno, F. Reitich, “Numerical solution of diffraction problems: A method of variation of boundaries,” J. Opt. Soc. Am. A 10, 1168–1175 (1993). [CrossRef]
  7. E. Popov, B. Bozhkov, D. Maystre, J. Hoose, “Integral method for echelles covered with lossless or absorbing thin dielectric layers,” Appl. Opt. 38, 47–55 (1999). [CrossRef]
  8. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  9. G. Bao, D. C. Dobson, J. A. Cox, “Mathematical studies in rigorous grating theory,” J. Opt. Soc. Am. A 12, 1029–1042 (1995). [CrossRef]
  10. G. Bao, L. Cowsar, and W. Masters, eds., Mathematical Modeling in Optical Sciences, SIAM Frontiers in Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001). [CrossRef]
  11. Z. Chen, H. Wu, “An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 41, 799–826 (2003). [CrossRef]
  12. I. Babuška, C. Rheinboldt, “Error estimates for adaptive finite element computations,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 15, 736–754 (1978). [CrossRef]
  13. P. Morin, R. H. Nochetto, K. G. Siebert, “Data oscillation and convergence of adaptive FEM,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 38, 466–488 (2000). [CrossRef]
  14. Z. Chen, S. Dai, “On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients,” SIAM J. Sci. Comput. (USA) 24, 443–462 (2002). [CrossRef]
  15. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, (Teubner, Wiesbaden, Germany, 1996).
  16. P. Monk, “ A posteriori error indicators for Maxwell’s equations,” J. Comput. Appl. Math. 100, 173–190 (1998). [CrossRef]
  17. P. Monk, E. Süli, “The adaptive computation of far-field patterns by a posteriori error estimation of linear functionals,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 36, 251–274 (1998). [CrossRef]
  18. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  19. E. Turkel, A. Yefet, “Absorbing PML boundary layers for wave-like equations,” Appl. Numer. Math. 27, 533–557 (1998). [CrossRef]
  20. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999). [CrossRef]
  21. P. Lalanne, J.-P. Hugonin, “Numerical performance of finite-difference modal methods for the electromagnetic analysis of one-dimensional lamellar gratings,” J. Opt. Soc. Am. A 17, 1033–1042 (2000). [CrossRef]
  22. S. S. Wang, R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995). [CrossRef] [PubMed]
  23. E. Popov, M. Nevière, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000). [CrossRef]
  24. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited