OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1311–1318

Dynamic guided-mode resonant grating filter with quadratic electro-optic effect

Hiroyuki Ichikawa and Hisao Kikuta  »View Author Affiliations

JOSA A, Vol. 22, Issue 7, pp. 1311-1318 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel and simple concept of dynamic switching of guided-mode resonant grating filters with quadratic electro-optic effect within a waveguide layer modulated by external fields due to comb-shaped electrodes that also behave as a grating. As the device has subwavelength structure, the performance must be analyzed electromagnetically. We describe numerical simulation with the finite-difference time-domain method specially modified so that it can treat inhomogeneous anisotropic media such as lead lanthanum zirconate titanate.

© 2005 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.1950) Optical devices : Diffraction gratings
(230.2090) Optical devices : Electro-optical devices
(230.7370) Optical devices : Waveguides
(260.5740) Physical optics : Resonance

Original Manuscript: November 19, 2004
Revised Manuscript: January 13, 2005
Manuscript Accepted: January 13, 2005
Published: July 1, 2005

Hiroyuki Ichikawa and Hisao Kikuta, "Dynamic guided-mode resonant grating filter with quadratic electro-optic effect," J. Opt. Soc. Am. A 22, 1311-1318 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mashev, E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984). [CrossRef]
  2. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985). [CrossRef]
  3. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985). [CrossRef]
  4. I. A. Avrutskii, G. A. Gobulenko, V. A. Sychugov, A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide,” Sov. J. Quantum Electron. 16, 1063–1065 (1986). [CrossRef]
  5. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, E. Popov, L. Mashev, “Diffraction characteristics of planar corrugated waveguide,” Opt. Quantum Electron. 18, 123–128 (1986). [CrossRef]
  6. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  7. A. Mizutani, H. Kikuta, K. Nakajima, K. Iwata, “Nonpolarizing guided-mode resonant grating filter for oblique incidence,” J. Opt. Soc. Am. A 18, 1261–1266 (2001). [CrossRef]
  8. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21, 1564–1566 (1996). [CrossRef] [PubMed]
  9. W. Suh, S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28, 1763–1765 (2003). [CrossRef] [PubMed]
  10. R. R. Boye, R. W. Ziolkowski, R. K. Kostuk, “Resonant waveguide grating switching device with nonlinear optical material,” Appl. Opt. 38, 5181–5185 (1999). [CrossRef]
  11. A. Mizutani, H. Kikuta, K. Iwata, “Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching,” J. Opt. Soc. Am. A 22, 355–360 (2005). [CrossRef]
  12. We use the term “reflectance” here as a ratio of the reflected power to the incident power.
  13. J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-Optics, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.
  14. A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonance grating filters,” Opt. Rev. 10, 13–18 (2003). [CrossRef]
  15. X. Yang, M. Aspelmeyer, L. T. Wood, J. H. Miller, “Diffraction from tunable periodic structures. II. Experimental observation of electric field-induced diffraction peaks,” Appl. Opt. 41, 5845–5850 (2002). [CrossRef] [PubMed]
  16. Well-summarized detail of electro-optic effect can be found in, for example, B. E.A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 696–736. [CrossRef]
  17. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  18. S. G. García, T. M. Hung-Bao, R. G. Martin, B. G. Olmedo, “On the application of finite methods in time domain to anisotropic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 44, 2195–2206 (1996). [CrossRef]
  19. H. Nishihara, M. Haruna, T. Suhara, “Optical integrated circuits,” (McGraw-Hill, New York, 1989) p. 166.
  20. For example, Eq. (1) in H. Ichikawa, “Analysis of femtosecond-order optical pulses diffracted by periodic structure,” J. Opt. Soc. Am. A 16, 299–304 (1999). [CrossRef]
  21. E. Popov, B. Bozhkov, “Corrugated waveguides as resonance optical filters: advantages and limitations,” J. Opt. Soc. Am. A 18, 1758–1764 (2001). [CrossRef]
  22. R. R. Boye, R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000). [CrossRef]
  23. F. Lemarchand, A. Sentenac, E. Cambril, H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” Pure Appl. Opt. 1, 545–551 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited