OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1357–1368

Estimation of kinetic model parameters in fluorescence optical diffusion tomography

Adam B. Milstein, Kevin J. Webb, and Charles A. Bouman  »View Author Affiliations


JOSA A, Vol. 22, Issue 7, pp. 1357-1368 (2005)
http://dx.doi.org/10.1364/JOSAA.22.001357


View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental model or some other model with a deterministic functional form. The method extends our previous work in fluorescence optical diffusion tomography by parametrically reconstructing the time-dependent fluorescent yield. The reconstruction uses a Bayesian framework and parametric iterative coordinate descent optimization, which is closely related to Gauss–Seidel methods. We demonstrate the method with a simulation study.

© 2005 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(290.3200) Scattering : Inverse scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: July 30, 2004
Revised Manuscript: January 21, 2005
Manuscript Accepted: January 21, 2005
Published: July 1, 2005

Citation
Adam B. Milstein, Kevin J. Webb, and Charles A. Bouman, "Estimation of kinetic model parameters in fluorescence optical diffusion tomography," J. Opt. Soc. Am. A 22, 1357-1368 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-7-1357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. J. Radiol. 13, 195–208 (2003).
  2. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999). [CrossRef] [PubMed]
  3. J. A. Reddy, P. S. Low, “Folate-mediated targeting of therapeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998). [CrossRef]
  4. U. Mahmood, C. Tung, J. A. Bogdanov, R. Weissleder, “Near-infrared optical imaging of protease activity for tumor detection,” Radiology 213, 866–870 (1999). [CrossRef] [PubMed]
  5. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19, 327–331 (2001). [CrossRef] [PubMed]
  6. J. E. Bugaj, S. Achilefu, R. B. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001). [CrossRef] [PubMed]
  7. E. D. Morris, C. J. Endres, K. C. Schmidt, B. T. Christian, R. F. Muzic, R. E. Fisher, “Kinetic Modeling in PET,” in Emission Tomography: the Fundamentals of PET and SPECT, M. Wernick and J. Aarsvold, eds. (Academic, San Diego, Calif.,2004).
  8. W. R. Potter, D. A. Bellnier, T. J. Dougherty, “Optical methods for in-vivo pharmacokinetics,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. SPIE1645, 166–170 (1992).
  9. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997). [CrossRef] [PubMed]
  10. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000). [CrossRef] [PubMed]
  11. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca,“Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000). [CrossRef] [PubMed]
  12. R. Springett, Y. Sakata, D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001). [CrossRef] [PubMed]
  13. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, O. Nalcioglu, “ In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–2950 (2003). [CrossRef] [PubMed]
  14. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  15. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003). [CrossRef] [PubMed]
  16. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  17. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997). [CrossRef] [PubMed]
  18. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  19. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000). [CrossRef]
  20. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001). [CrossRef] [PubMed]
  21. V. Kolehmainen, S. Prince, S. R. Arridge, J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876–889 (2003). [CrossRef]
  22. S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003). [CrossRef] [PubMed]
  23. U. Schmitt, A. K. Louis, “Efficient algorithms for the regularization of dynamic inverse problems: I. Theory,” Inverse Probl. 18, 645–658 (2002). [CrossRef]
  24. U. Schmitt, A. K. Louis, C. Wolters, M. Vauhkonen, “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications,” Inverse Probl. 18, 659–676 (2002). [CrossRef]
  25. Y. Zhang, A. Ghodrati, D. H. Brooks, “Analysis of Spatial-Temporal Regularization Methods for Linear Inverse Problems from a Common Statistical Framework,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 772–775.
  26. M. N. Wernick, E. J. Infusino, M. Milosevic, “Fast spatio-temporal image reconstruction for dynamic PET,” IEEE Trans. Med. Imaging 18, 185–195 (1999). [CrossRef] [PubMed]
  27. T. E. Nichols, J. Qi, E. Asma, R. M. Leahy, “Spatiotemporal Reconstruction of List-Mode PET Data,” IEEE Trans. Med. Imaging 21, 396–404 (2002). [CrossRef] [PubMed]
  28. B. W. Reutter, G. T. Gullberg, R. H. Huesman, “Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines,” IEEE Trans. Med. Imaging 19, 434–450 (2000). [CrossRef] [PubMed]
  29. S. Ahn, J. A. Fessler, T. E. Nichols, R. A. Koeppe, “Covariance of kinetic parameter estimators based on time activity curve reconstructions: preliminary study on 1-D dynamic imaging,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2004), Vol. 2, pp. 368–371.
  30. J. A. Jacquez, Compartmental Analysis in Biology and Medicine (The University of Michigan Press, Ann Arbor, Mich., 1985).
  31. R. E. Carson, K. Lange, “The EM parametric image reconstruction algorithm,” J. Am. Stat. Assoc. 80, 20–22 (1985). [CrossRef]
  32. J. Matthews, D. Bailey, P. Price, V. Cunningham, “The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction”, Phys. Med. Biol. 42, 1155–1173 (1997). [CrossRef] [PubMed]
  33. M. Kamasak, C. A. Bouman, E. D. Morris, K. Sauer, “Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data,” in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers (IEEE Signal Processing Society, www.ieee.org/organizations/society/sp/conferences.html, 2003), pp. 1919–1923.
  34. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004). [CrossRef]
  35. A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002). [CrossRef]
  36. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002). [CrossRef]
  37. K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993). [CrossRef]
  38. C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993). [CrossRef] [PubMed]
  39. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  40. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997). [CrossRef] [PubMed]
  41. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999). [CrossRef]
  42. J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001). [CrossRef]
  43. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  44. F. Fedele, J. P. Laible, M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Chem. Phys. 187, 597–619 (2003).
  45. E. K.P. Chong, S. H. Zak, An Introduction to Optimization (Wiley, New York, 1996).
  46. J. C. Adams, “MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989). [CrossRef]
  47. S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998). [CrossRef]
  48. S. Oh, C. A. Bouman, K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005). [CrossRef] [PubMed]
  49. A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, K. J. Webb, “ Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid,” Appl. Opt. 44, 2300–2310 (2005). [CrossRef] [PubMed]
  50. R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited