OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1432–1441

Optical properties of microfabricated fully-metal-coated near-field probes in collection mode

Emiliano Descrovi, Luciana Vaccaro, Laure Aeschimann, Wataru Nakagawa, Urs Staufer, and Hans-Peter Herzig  »View Author Affiliations


JOSA A, Vol. 22, Issue 7, pp. 1432-1441 (2005)
http://dx.doi.org/10.1364/JOSAA.22.001432


View Full Text Article

Enhanced HTML    Acrobat PDF (1195 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A study of the optical properties of microfabricated, fully-metal-coated quartz probes collecting longitudinal and transverse optical fields is presented. The measurements are performed by raster scanning the focal plane of an objective, focusing azimuthally and radially polarized beams by use of two metal-coated quartz probes with different metal coatings. A quantitative estimation of the collection efficiencies and spatial resolutions in imaging both longitudinal and transverse fields is made. Longitudinally polarized fields are collected with a resolution approximately 1.5 times higher as compared with transversely polarized fields, and this behavior is almost independent of the roughness of the probe’s metal coating. Moreover, the coating roughness is a critical parameter in the relative collection efficiency of the two field orientations.

© 2005 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(180.5810) Microscopy : Scanning microscopy
(260.3910) Physical optics : Metal optics
(260.5430) Physical optics : Polarization

History
Original Manuscript: November 12, 2004
Revised Manuscript: January 24, 2005
Manuscript Accepted: January 24, 2005
Published: July 1, 2005

Citation
Emiliano Descrovi, Luciana Vaccaro, Laure Aeschimann, Wataru Nakagawa, Urs Staufer, and Hans-Peter Herzig, "Optical properties of microfabricated fully-metal-coated near-field probes in collection mode," J. Opt. Soc. Am. A 22, 1432-1441 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-7-1432


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. K. Wickramasinghe, C. C. Williams, “Apertureless near field optical microscope,” U.S. patent 4,947,034 (April 28, 1989).
  2. F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994). [CrossRef]
  3. A. Bouhelier, M. R. Beversluis, L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003). [CrossRef]
  4. E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004). [CrossRef]
  5. G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040–5045 (2001). [CrossRef]
  6. R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, N. F. de Rooji, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000). [CrossRef]
  7. L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998). [CrossRef]
  8. L. Aeschimann, L. Vaccaro, T. Akiyama, U. Staufer, N. F. de Rooij, R. Eckert, H. Heinzelmann, “Polarization properties of fully metal coated scanning near-field optical microscopy probes,” AIP Conf. Proc. 696, 906–910 (2003). [CrossRef]
  9. A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2002). [CrossRef]
  10. L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003). [CrossRef]
  11. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  12. M. A. Lieb, A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8, 458–474 (2001). [CrossRef] [PubMed]
  13. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  14. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzom, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000). [CrossRef]
  15. Z. Bomzom, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1598 (2001). [CrossRef]
  16. Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002). [CrossRef]
  17. M. Stalder, M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef] [PubMed]
  18. M. Stalder, M. Schadt, “Polarisation converters based on liquid crystal devices,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282, 343–353 (1996).
  19. S. Masuda, T. Nose, R. Yamaguchi, S. Sato, “Polarization-converting devices using a UV curable liquid crystal,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE2873, 301–304 (1996).
  20. C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ⩽90  degrees,” J. Phys. D 8, 1575–1584 (1975). [CrossRef]
  21. M. Schadt, W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–129 (1971). [CrossRef]
  22. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503 (1941). [CrossRef]
  23. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3, 2086–2093 (1986). [CrossRef]
  24. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989). [CrossRef]
  25. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives: erratum. Certain computational aspects of vector diffraction problems: erratum,” J. Opt. Soc. Am. A 10, 382–383 (1993). [CrossRef]
  26. T. Grosjean, D. Courjon, “Polarization filtering by imaging systems: effect on image structure,” Phys. Rev. E 67, 046611 (2003). [CrossRef]
  27. R. H. Jordan, D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution,” Opt. Lett. 19, 427–429 (1994). [CrossRef] [PubMed]
  28. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11 (1995). [CrossRef]
  29. L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Rooij, L. Thiery, R. Eckert, H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” J. Microsc. 209, 182–187 (2003). [CrossRef] [PubMed]
  30. M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, Fla., 1997).
  31. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. M. Gösele, U. Gösele, R. B. Wehspohn, J. Mlynek, V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited