OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 8 — Aug. 1, 2005
  • pp: 1546–1554

Light-scattering and dispersion behavior of multiwalled carbon nanotubes

Craig Saltiel, Siva Manickavasagam, M. Pinar Mengüc, and Rodney Andrews  »View Author Affiliations


JOSA A, Vol. 22, Issue 8, pp. 1546-1554 (2005)
http://dx.doi.org/10.1364/JOSAA.22.001546


View Full Text Article

Enhanced HTML    Acrobat PDF (872 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Elliptically polarized light-scattering measurements were performed to investigate the dispersion behavior of multiwalled carbon nanotubes (MWNT). Xylene- and pyridine-derived MWNT powders were dispersed in water and ethanol in separate optic cells and allowed to sit undisturbed over a two-week time period after probe sonication. Continuous light-scattering measurements taken between scattering angles of 10 170 deg and repeated over several days showed that the nanotubes formed fractal-like networks. The pyridine-derived MWNTs showed greater dispersion variation over time, tending to aggregate and clump much faster than the xylene-derived tubes. The water suspensions appeared much more stable than the ethanol suspensions, which transformed into nonfractal morphology after a few hours. We relate the dispersion stability to size and fringe patterns on the outer surface of the nanotubes. Measured values of fractal dimension were distinctly lower than those in previous studies of single-walled carbon nanotubes. Profiles of both diagonal and off-diagonal scattering matrix elements are presented.

© 2005 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles
(310.3840) Thin films : Materials and process characterization

History
Original Manuscript: November 2, 2004
Revised Manuscript: January 18, 2005
Manuscript Accepted: January 19, 2005
Published: August 1, 2005

Citation
Craig Saltiel, M. Pinar Mengüc, Rodney Andrews, and Siva Manickavasagam, "Light-scattering and dispersion behavior of multiwalled carbon nanotubes," J. Opt. Soc. Am. A 22, 1546-1554 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-8-1546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London) 345, 56–58 (1991). [CrossRef]
  2. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).
  3. M. S. Dresselhaus, G. Dresselhaus, P. Avouridis, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer-Verlag, Berlin, 2001). [CrossRef]
  4. E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol. 61, 1899–1912 (2001). [CrossRef]
  5. K. T. Lau, D. Hui, “The revolutionary creation of new advanced materials—carbon nanotube composites,” Composites, Part B 33, 263–277 (2002). [CrossRef]
  6. P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio, “Single-walled carbon nanotube–polymer composites: strength and weaknesses,” Adv. Mater. (Weinheim, Germany) 12, 750–753 (2000). [CrossRef]
  7. M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000). [CrossRef] [PubMed]
  8. D. W. Schaefer, J. Zhao, J. M. Brown, D. P. Anderson, D. W. Tomlin, “Morphology of dispersed carbon single-walled nanotubes,” Chem. Phys. Lett. 375, 369–375 (2003). [CrossRef]
  9. M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. H. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, R. E. Smalley, “Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping,” Chem. Phys. Lett. 342, 265–271 (2001). [CrossRef]
  10. J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, “Solution properties of single-walled carbon nanotubes,” Science 282, 95–98 (1998). [CrossRef] [PubMed]
  11. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafiner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodrigez-Macia, Y. S. Shon, T. R. Lee, D. T. Colbert, E. R. Smalley, “Fullerene pipes,” Science 280, 1253–1256 (1998). [CrossRef] [PubMed]
  12. Q. Chen, C. Saltiel, S. Manickavasagam, L. S. Schadler, R. W. Siegel, H. Yang, “Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension,” J. Colloid Interface Sci. 280, 91–97 (2004). [CrossRef] [PubMed]
  13. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  14. M. P. Mengüc, S. Manickavasagam, “Characterization of size and structure of agglomerates and inhomogeneous particles via polarized light,” Int. J. Eng. Sci. 36, 1569–1596 (1998). [CrossRef]
  15. R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999). [CrossRef]
  16. D. Qian, R. Andrews, D. Jacques, P. Kichambare, G. Lian, E. C. Dickey, “Low-temperature synthesis of large-area CNx, nanotube arrays,” J. Nanosci. Nanotechnol. 3, 93–97 (2003). [CrossRef] [PubMed]
  17. R. Czerw, M. Terrones, J. C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Buhle, D. L. Carroll, “Identification of electron donor states in N-doped carbon nanotubes,” Nano Lett. 1, 457–460 (2001). [CrossRef]
  18. Y.-M. Choi, D.-S. Lee, R. Czerw, P.-W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, H. Terrones, J.-C. Charlier, P. M. Ajayan, S. Roth, D. L. Carroll, Y.-W. Park, “Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states,” Nano Lett. 3, 839–842 (2003). [CrossRef]
  19. S. Manickavasagam, M. P. Mengüc, “Scattering matrix elements of fractal-like soot agglomerates,” Appl. Opt. 36, 1337–1351 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited