OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 8 — Aug. 1, 2005
  • pp: 1577–1588

Gaussian-optics-based optical modeling and characterization of a Fabry–Perot microcavity for sensing applications

Dagang Guo, Rongming Lin, and Weijun Wang  »View Author Affiliations


JOSA A, Vol. 22, Issue 8, pp. 1577-1588 (2005)
http://dx.doi.org/10.1364/JOSAA.22.001577


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A generalized study has been carried out on the modeling of a Fabry–Perot microcavity for sensing applications. Different analytical models on transmission characteristics of a Fabry–Perot microcavity are established by using plane-wave-based techniques, such as the Macleod characteristic matrix technique, the transfer matrix technique, and Smith’s technique. A novel Gaussian-optics-based model for a Fabry–Perot microcavity illuminated by a laser beam is then developed and validated. The influence of laser beam waist on microcavity optical response is investigated, and the required minimal beam waist size is explored to ensure a useful optical response for sensing applications that can be accurately predicted by plane-wave optics. Also, the perturbations of microcavity performance induced by different types of microcavity mirror imperfections are discussed, based on the novel optical model. The prototype of the proposed Fabry–Perot microcavity for sensing applications has been successfully fabricated and characterized.

© 2005 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.4170) Optical devices : Multilayers
(240.5770) Optics at surfaces : Roughness

History
Original Manuscript: August 25, 2004
Revised Manuscript: January 31, 2005
Manuscript Accepted: February 6, 2005
Published: August 1, 2005

Citation
Dagang Guo, Rongming Lin, and Weijun Wang, "Gaussian-optics-based optical modeling and characterization of a Fabry–Perot microcavity for sensing applications," J. Opt. Soc. Am. A 22, 1577-1588 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-8-1577


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Kao, H. F. Taylor, “High-sensitivity intrinsic fiber-optic Fabry–Perot pressure sensor,” Opt. Lett. 21, 615–617 (1996). [CrossRef] [PubMed]
  2. J. Park, M. G. Kim, “High-performance fiber-optic Fabry–Perot pressure sensor with Si3N4∕SiO2∕Si3N4 diaphragm,” Jpn. J. Appl. Phys. Part 1 38, 1562–1564 (1999). [CrossRef]
  3. W. N. Macpherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000). [CrossRef]
  4. W. N. Macpherson, S. R. Kidd, J. S. Barton, J. D. C. Jones, “Phase demodulation in optical fiber Fabry–Perot sensors with inexact phase steps,” Appl. Opt. 39, 1382–1388 (2000). [CrossRef]
  5. K. L. Belsley, D. R. Huber, J. Goodman, “All-passive interferometric fiber-optic pressure sensor,” presented at the Annual Meeting of the Instrument Society of America, 1986, Paper 86-2801.
  6. W. H. Quick, K. A. James, J. E. Coker, “Fiber optics sensing techniques,” presented at the First International Conference on Optical Fiber Sensors, London, April 1983.
  7. Y. M. Kim, D. P. Neikirk, “Micromachined Fabry–Perot cavity pressure transducer,” IEEE Photonics Technol. Lett. 7, 1471–1473 (1995). [CrossRef]
  8. J. Han, “Novel fabrication and characterization method of Fabry–Perot microcavity pressure sensors,” Sens. Actuators, A 75, 168–175 (1999). [CrossRef]
  9. J. Han, J. Y. Kim, T. S. Kim, J. S. Kim, “Performance of Fabry–Perot microcavity structures with corrugated diaphragms,” Sens. Actuators, A 79, 162–172 (2000). [CrossRef]
  10. A. Nussbaum, R. A. Phillips, Contemporary Optics for Scientists and Engineers (Prentice Hall, 1976).
  11. F. Abeles, Advanced Optical Techniques, A. C. S. Van Heel, ed. (North-Holland, 1967).
  12. H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976). [CrossRef]
  13. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1965).
  14. S. D. Smith, “Design of multilayer filters by considering two effective interfaces,” J. Opt. Soc. Am. 48, 43–50 (1958). [CrossRef]
  15. H. Kogelnik, T. Li, “Laser beam and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  16. J. T. Verdeyn, Laser Electronics, 2nd ed. (Prentice Hall, 1989).
  17. H. Abu-Safia, R. Al-Tahtamouni, I. Abu-Aljarayesh, N. A. Yusuf, “Transmission of a Gaussian beam through a Fabry–Perot interferometer,” Appl. Opt. 33, 3805–3811 (1994). [CrossRef] [PubMed]
  18. Z. M. Wu, G. Q. Xia, “Transmission of a Gaussian beam after incidenting nonnormally on a Fabry–Perot etalon: a nonresonant case,” Opt. Laser Technol. 35, 123–126 (2003). [CrossRef]
  19. Z. M. Wu, G. Q. Xia, H. Q. Zhou, J. W. Wu, M. L. Liu, “Transmission of a Gaussian beam after incidenting nonnormally on a Fabry–Perot etalon,” Opt. Laser Technol. 35, 1–4 (2003). [CrossRef]
  20. F. Moreno, F. Gonzalez, “Transmission of a Gaussian beam of low divergence through a high-finesse Fabry–Perot device,” J. Opt. Soc. Am. A 9, 2173–2175 (1992). [CrossRef]
  21. E. Nichelatti, G. Salvetti, “Spatial and spectral response of a Fabry–Perot interferometer illuminated by a Gaussian beam,” Appl. Opt. 34, 4703–4712 (1995). [CrossRef] [PubMed]
  22. J. C. Cotteverte, F. Bretenaker, A. Le Floch, “Jones matrices of a tilted plate for Gaussian beams,” Appl. Opt. 30, 305–311 (1991). [CrossRef] [PubMed]
  23. J. Poirson, T. Lanternier, J. C. Cotteverte, “Jones matrices of a quarter-wave plate for Gaussian beams,” Appl. Opt. 34, 6806–6818 (1995). [CrossRef] [PubMed]
  24. W. J. Wang, D. G. Guo, R. M. Lin, X. W. Wang, “A single-chip diaphragm-type miniature Fabry–Perot pressure sensor with improved cross-sensitivity to temperature,” Meas. Sci. Technol. 15, 905–910 (2004). [CrossRef]
  25. P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981). [CrossRef]
  26. E. T. Carlen, C. H. Mastrangelo, “Statistical model for spatial correlation in thin film deposition and reactive growth,” IEEE Trans. Semicond. Manuf. 11, 511–521 (1998). [CrossRef]
  27. G. S. Bhatnagar, K. Singh, B. N. Gupta, “Transmission profile of a Fabry–Perot interferometer suffering from asymmetric surface defects,” Nouv. Rev. Opt. 5, 237–240 (1974). [CrossRef]
  28. W. J. Wang, R. M. Lin, T. T. Sun, D. G. Guo, Y. Ren, “Performance-enhanced Fabry–Perot microcavity structure with a novel non-planar diaphragm,” Microelectron. Eng. 70, 102–108 (2003). [CrossRef]
  29. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  30. I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited