OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 8 — Aug. 1, 2005
  • pp: 1662–1667

Chebyshev and Taylor approximations of polarization mode dispersion for improved compensation bandwidth

David Yevick, Mark Chanachowicz, Michael Reimer, Maurice O’Sullivan, Weihong Huang, and Tao Lu  »View Author Affiliations

JOSA A, Vol. 22, Issue 8, pp. 1662-1667 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine a series of experimentally realizable procedures for wide-bandwidth polarization mode dispersion compensation based on Taylor and Chebyshev approximations to the transfer matrix for light polarization in optical fibers. Our results demonstrate that a symmetric ordering of compensator elements in the Taylor procedure improves performance and that methods based on the Chebyshev approximation can significantly widen the compensation bandwidth.

© 2005 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.4510) Fiber optics and optical communications : Optical communications

Original Manuscript: August 2, 2004
Revised Manuscript: December 13, 2005
Manuscript Accepted: January 27, 2005
Published: August 1, 2005

David Yevick, Michael Reimer, Weihong Huang, Tao Lu, Maurice O’Sullivan, and Mark Chanachowicz, "Chebyshev and Taylor approximations of polarization mode dispersion for improved compensation bandwidth," J. Opt. Soc. Am. A 22, 1662-1667 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Shtaif, A. Mecozzi, M. Tur, J. A. Nagel, “A compensator for the effects of high-order polarization mode dispersion in optical fibers,” IEEE Photonics Technol. Lett. 12, 434–436 (2000). [CrossRef]
  2. A. Yariv, Optical Fiber Communication, 5th ed. (Oxford U. Press, 1997).
  3. A. Eyal, W. K. Marshall, M. Tur, A. Yariv, “Representation of second-order polarisation mode dispersion,” Electron. Lett. 35, 1658–1659 (1999). [CrossRef]
  4. T. Kudou, M. Iguchi, M. Masuda, T. Ozeki, “Theoretical basis of polarization mode dispersion equalization up to the second order,” J. Lightwave Technol. 18, 614–617 (2000). [CrossRef]
  5. E. Hellstrom, H. Sunnerud, M. Westlund, M. Karlsson, “Third-order dispersion compensation using a phase modulator,” J. Lightwave Technol. 21, 1188–1197 (2003). [CrossRef]
  6. H. Sunnerud, M. Karlsson, C. Xie, P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20, 2204–2219 (2002). [CrossRef]
  7. L. Moller, “Filter synthesis for broad-band PMD compensation in WDM systems,” IEEE Photonics Technol. Lett. 12, 1258–1260 (2000). [CrossRef]
  8. A. Eyal, A. Yariv, “Design of broad-band PMD compensation filters,” IEEE Photonics Technol. Lett. 14, 1088–1090 (2002). [CrossRef]
  9. W. H. Press, B. P. Flannery, S. A. Teukolsky, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).
  10. F. Heismann, “Accurate Jones matrix expansion for all orders of polarization mode dispersion,” Opt. Lett. 28, 2013–2015 (2003). [CrossRef] [PubMed]
  11. I. T. Lima, R. Khosravani, P. Ebrahimi, E. Ibragimov, C. R. Menyuk, A. E. Willner, “Comparison of polarization mode dispersion emulators,” J. Lightwave Technol. 19, 1872–1881 (2001). [CrossRef]
  12. M. Karlsson, “Probability density functions of the differential group delay in optical fiber communication systems,” J. Lightwave Technol. 19, 324–331 (2001). [CrossRef]
  13. H. Kogelnik, L. E. Nelson, J. P. Gordon, “Emulation and inversion of polarization-mode dispersion,” J. Lightwave Technol. 21, 482–495 (2003). [CrossRef]
  14. T. J. Rivlin, The Chebyshev Polynomials (Wiley, 1974).
  15. M. Glasner, D. Yevick, B. Hermansson, “Generalized propagation formulas of arbitrarily high order,” J. Chem. Phys. 95, 8266–8272 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited