OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 9 — Sep. 1, 2005
  • pp: 1772–1779

Simultaneous spatial and spectral imaging of lasing droplets

Alexander Braun, Christoph Kornmesser, and Volker Beushausen  »View Author Affiliations

JOSA A, Vol. 22, Issue 9, pp. 1772-1779 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental technique that allows the simultaneous spatial imaging and spectral analysis of falling droplets that exhibit lasing. Single droplet investigations serve as, among other purposes, a preliminary study for spray and combustion researchers. The described setup provides a valuable tool for the evaluation of microdroplet investigations with laser-spectroscopic techniques that rely on laser-induced fluorescence (LIF) or similar spectroscopical phenomena. The emphasis is that both spatial and spectral information are obtained from single-shot images of a falling droplet. Furthermore, combining spatial imaging and a spatially resolving optical multichannel analyzer makes a pointwise rastering of the droplets spectrum possible. This allows for the (almost) unambiguous determination of sources of influence on the spectrum of these droplets—such as geometrical distortion and lasing, nondissolved tracer lumps, and similar phenomena. Although the focus is on the experimental technique itself, we supplement detailed studies of lasing in falling microdroplets. These results were obtained with the aim of developing a system for measuring temperature distributions in droplets and sprays. In the light of these results the practice of calibrating a droplets spectrum by use of a bulk liquid sample needs to be critically reviewed.

© 2005 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced

Original Manuscript: December 28, 2004
Revised Manuscript: February 24, 2005
Manuscript Accepted: February 24, 2005
Published: September 1, 2005

Alexander Braun, Christoph Kornmesser, and Volker Beushausen, "Simultaneous spatial and spectral imaging of lasing droplets," J. Opt. Soc. Am. A 22, 1772-1779 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Lu, L. A. Melton, “Measurement of transient temperature field within a falling droplet,” AIAA J. 38, 95–101 (2000). [CrossRef]
  2. T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 69, 1–4 (1999).
  3. P. Lavieille, F. Lemoine, M. Lebouché, O. Ravel, G. Lavergne, G. Farré, “A new strategy to measure temperature of droplets: two colors laser-induced fluorescence; Comparison to infrared thermometry,” in Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems (Institute for Liquid Atomization and Spray Systems, 2000), pp. 139–144.
  4. H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984). [CrossRef] [PubMed]
  5. H. M. Tzeng, M. B. Long, R. K. Chang, “Size and shape variation of liquid droplets deduced from morphology-dependent resonances in fluorescence spectra,” in Particle Sizing and Spray Analysis, N. Chigier and G. W. Stewart, ed., Proc. SPIE573, 80–83 (1985).
  6. J. H. Eickmans, S. X. Qian, R. K. Chang, “Detection of water droplet size and anion species by nonlinear optical scattering,” Part. Charact. 4, 85–89 (1986). [CrossRef]
  7. B. Abramzon, W. A. Sirignano, “Droplet vaporization model for spray combustion calculations,” Int. J. Heat Mass Transfer 32, 1605–1618 (1989). [CrossRef]
  8. C. Varnavas, “A droplet evaporation model for high temperature and pressure spray,” Ph.D. dissertation (University of Illinois at Urban-Champaign, 1995).
  9. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).
  10. R. Becker, Theorie der Wärme (Springer-Verlag, 1985). [CrossRef]
  11. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981). [CrossRef]
  12. A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991). [CrossRef] [PubMed]
  13. J. F. Owen, R. K. Chang, R. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982). [CrossRef]
  14. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and levelshift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).
  15. J. van Beeck, “Rainbow phenomena: development of a laser-based, nonintrusive technique for measuring droplet size, temperature and velocity,” Ph.D. dissertation (Universiteit Eindhoven, 1997).
  16. A. Serpengüzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992). [CrossRef] [PubMed]
  17. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993). [CrossRef]
  18. Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003). [CrossRef] [PubMed]
  19. B. M. Möller, U. Woggon, M. V. Artemyev, R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004). [CrossRef]
  20. Y. P. Rakovich, M. Gerlach, A. L. Bradley, J. F. Donegan, T. M. Connolly, J. J. Boland, M. A. Przyjalgowski, A. Ryder, N. Gaponik, A. L. Rogach, “Confined optical modes in small photonic molecules with semiconductor nanocrystals,” J. Appl. Phys. 96, 6761–6765 (2004). [CrossRef]
  21. E. A. Power, T. Thirunamachandran, “Quantum electrodynamics in a cavity,” Phys. Rev. A 25, 2473–2484 (1982). [CrossRef]
  22. R. G. Hulet, E. S. Hilfer, D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 5, 2137–2140 (1985).
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  24. P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990). [CrossRef]
  25. J. D. Eversole, H. B. Lin, A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995). [CrossRef]
  26. J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988). [CrossRef] [PubMed]
  27. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996). [CrossRef] [PubMed]
  28. F. Bai, L. A. Melton, “High-temperature, oxygen-resistant molecular fluorescence thermometers,” Appl. Spectrosc. 51, 1276–1280 (1997). [CrossRef]
  29. A. Braun, “Laserspektroskopische Messverfahren zur Temperaturbestimmung in Sprays,” Master’s thesis (Georg-August-Universität, Göttingen, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited