OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 9 — Sep. 1, 2005
  • pp: 1844–1849

Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization

Jean Paul Hugonin and Philippe Lalanne  »View Author Affiliations

JOSA A, Vol. 22, Issue 9, pp. 1844-1849 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A modified formulation of Maxwell’s equations is presented that includes a complex and nonlinear coordinate transform along one or two Cartesian coordinates. The added degrees of freedom in the modified Maxwell’s equations allow one to map an infinite space to a finite space and to specify graded perfectly matched absorbing boundaries that allow the outgoing wave condition to be satisfied. The approach is validated by numerical results obtained by using Fourier-modal methods and shows enhanced convergence rate and accuracy.

© 2005 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(130.2790) Integrated optics : Guided waves

Original Manuscript: January 21, 2005
Manuscript Accepted: March 4, 2005
Published: September 1, 2005

Jean Paul Hugonin and Philippe Lalanne, "Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization," J. Opt. Soc. Am. A 22, 1844-1849 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  2. Z. Sacks, D. Kingsland, R. Lee, J. Lee, “A perfectly matched anisotropic absorber for use as an absorbers boundary conditions,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). [CrossRef]
  3. W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]
  4. J. M. Elson, P. Tran, “ R-matrix propagator with perfectly matched layers for the study of integral optical components,” J. Opt. Soc. Am. A 16, 2983–2989 (1999). [CrossRef]
  5. P. Bienstman, R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002). [CrossRef]
  6. E. Silberstein, Ph. Lalanne, J. P. Hugonin, Q. Cao, “On the use of grating theory in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  7. Q. Cao, Ph. Lalanne, J. P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguide,” J. Opt. Soc. Am. A 19, 335–338 (2002). [CrossRef]
  8. J. C. Chen, K. Li, “Quartic perfectly matched layers for dielectric waveguides and gratings,” Microwave Opt. Technol. Lett. 10, 319–323 (1995). [CrossRef]
  9. E. A. Marengo, C. M. Rappaport, E. L. Miller, “Optimum PML ABC conductivity profile in FDTD,” IEEE Trans. Magn. 35, 1506–1509 (1999). [CrossRef]
  10. E. Bahar, “Electromagnetic wave propagation in inhomogeneous multilayered structures of arbitrary varying thickness—generalized field transforms,” J. Math. Phys. 14, 1024–1029 (1972). [CrossRef]
  11. D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface modes, A. D. Boardman, ed. (Wiley, 1982), Chap. 17.
  12. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68, 1206–1210 (1978). [CrossRef]
  13. T. K. Gaylord, M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894–936 (1985). [CrossRef]
  14. F. Montiel, M. Nevière, “Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm,” J. Opt. Soc. Am. A 11, 3241–3250 (1994). [CrossRef]
  15. Ph. Lalanne, E. Silberstein, “Fourier-modal method applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  16. J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001). [CrossRef]
  17. S. J. Hewlett, F. Ladouceur, “Fourier decomposition method applied to mapped infinite domains: scalar analysis of dielectric waveguides down to modal cutoff,” J. Lightwave Technol. 13, 375–383 (1995). [CrossRef]
  18. P. Lalanne, J. P. Hugonin, J. M. Gérard, “Electromagnetic study of the Q of pillar microcavities in the small limit diameter,” Appl. Phys. Lett. 84, 4726–4728 (2004). [CrossRef]
  19. C. Sauvan, G. Lecamp, P. Lalanne, J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13, 245–255 (2005). [CrossRef] [PubMed]
  20. C. Sauvan, P. Lalanne, J. C. Rodier, J. P. Hugonin, A. Talneau, “Accurate modeling of line-defect photonic crystal waveguides,” IEEE Photonics Technol. Lett. 15, 1243–1245 (2003). [CrossRef]
  21. J. P. Hugonin, P. Lalanne, I. Del Villar, I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited