## Electromagnetic computational method for the scattering of an axisymmetric laser beam by an inhomogeneous body of revolution

JOSA A, Vol. 22, Issue 9, pp. 1850-1865 (2005)

http://dx.doi.org/10.1364/JOSAA.22.001850

Enhanced HTML Acrobat PDF (631 KB)

### Abstract

An original computational method for solving the two-dimensional problem of the scattering of an axisymmetric laser beam by an arbitrary-shaped inhomogeneous body of revolution is presented. This method relies on a domain decomposition of the scattering zone into concentric spherical radially homogeneous subdomains and on an expansion of the angular dependence of the fields on the Legendre functions. Numerical results for the fields obtained for various scatterer geometries are presented and analyzed.

© 2005 Optical Society of America

**OCIS Codes**

(290.0290) Scattering : Scattering

(290.4020) Scattering : Mie theory

**History**

Original Manuscript: January 31, 2005

Published: September 1, 2005

**Citation**

Patrick Combis and Jérôme Robiche, "Electromagnetic computational method for the scattering of an axisymmetric laser beam by an inhomogeneous body of revolution," J. Opt. Soc. Am. A **22**, 1850-1865 (2005)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-9-1850

Sort: Year | Journal | Reset

### References

- F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003). [CrossRef]
- W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).
- A. Khebir, J. D’Angelo, “A new finite element formulation for RF scattering by complex bodies of revolution,” IEEE Trans. Antennas Propag. 41, 534–541 (1993). [CrossRef]
- M. G. Andreasen, “Scattering from bodies of revolution,” IEEE Trans. Antennas Propag. AP-13, 303–310 (1964).
- M. A. Morgan, K. K. Mei, “Coupled azimuthal potential for electromagnetic field problems in inhomogeneous axially symmetric media,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979). [CrossRef]
- M. A. Morgan, S.-K. Chang, K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-25, 413–417 (1984).
- L. N. Medgyesi-Mitschang, J. M. Putnam, “Electromagnetic scattering from axially inhomogeneous bodies of revolution,” IEEE Trans. Antennas Propag. AP-32, 797–806 (1984). [CrossRef]
- J. M. Tranquilla, H. M. Al-Rizzo, “Electromagnetic scattering from dielectic-coated axisymmetric objects using the generalized point-matching technique (GPMT),” IEEE Trans. Antennas Propag. 43, 63–71 (1995). [CrossRef]
- D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999). [CrossRef]
- D. W. Prather, S. Shi, “Electromagnetic analysis of axially symmetric diffractive lens with the method of moments,” J. Opt. Soc. Am. A 17, 729–739 (2000). [CrossRef]
- G. Mie, “Beitzrâge zur optik truber Medien, speziell kolloidaler Metalolsungen,” Ann. Phys. 25, 377–452 (1908). [CrossRef]
- P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys., 30, 57–136 (1909). [CrossRef]
- M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).
- L. D. Landau, E. M. Lifshitz, L. A. Pitaevskii, Electrodynamics of Continuous Media (Butterworth Heinemann, 1984).
- A. L. Alden, M. Kerker, “Scattering of electromagnetic waves from two concenctric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
- R. Bhandari, “Scattering coefficients for a multilayered sphere: analytical expressions and algorithms,” Appl. Opt. 24, 1960–1967 (1985). [CrossRef]
- L. Kai, P. Massoli, “Scattering of electromagnetic-plane waves by radially inhomogeneous spheres: a finely stratified sphere model,” Appl. Opt. 33, 501–511 (1994). [CrossRef] [PubMed]
- B. R. Johnson, “Light scattering by a multilayer sphere,” Appl. Opt. 35, 3286–3296 (1996). [CrossRef] [PubMed]
- B. R. Johnson, “Exact theory of electromagnetic scattering by a heteregenous multilayer sphere in the infinite-layer limit: effective-media approach,” J. Opt. Soc. Am. A 16, 845–852 (1999). [CrossRef]
- T. A. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67–74 (1998). [CrossRef]
- P. E. Bisbing, “Electromagnetic scattering by an exponenttially inhomogeneous plasma sphere,” IEEE Trans. Antennas Propag. AP-14, 219–224 (1966). [CrossRef]
- P. J. Wyatt, “Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects,” Phys. Rev. 127, 1837–1843 (1962). [CrossRef]
- J. R. Wait, “Electromagnetic scattering from radially inhomogeneous spheres,” Appl. Sci. Res., Sect. A 10, 441–450 (1963). [CrossRef]
- J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
- P.-M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).
- M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
- M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
- M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
- A. Taflove, Computationnal Electrodynamics (Artech House, 1995).
- S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
- T. Van, A. Wood, “A time-domain finite element method for Helmholtz equations,” J. Comput. Phys. 183, 486–507 (2002). [CrossRef]
- J.-P. Bérenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996). [CrossRef]
- G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitraly located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Laser sheet scattering by sphericals particles,” Part. Part. Syst. Charact. 10, 146–151 (1993). [CrossRef]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam coeffcients in generalized Lorenz–Mie theory by using a localized approximations,” J. Opt. Soc. Am. A 11, 2072–2079 (1992). [CrossRef]
- G. Gouesbet, “Exact description of arbitrary-shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2079 (1996). [CrossRef]
- F. Onofri, G. Gréhan, G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995). [CrossRef] [PubMed]
- Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, G. Gréhan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997). [CrossRef] [PubMed]
- Z. S. Wu, Y. P. Wang, “Electromagnetic scattering for multilayered sphere: recursive algorithms,” Radio Sci. 26, 1393–1401 (1991). [CrossRef]
- H. R Philipp, “Silicon dioxide (SiO2) (glass),” in Handbook of Optical Constants of Solids, E. D Palik, ed. (Academic, 1985), pp. 749–763. [CrossRef]
- D. Y. Smith, E. Shiles, M. Inokuti, “The optical properties of metallic aluminium,” in Handbook of Optical Constants of Solids, E. D Palik, ed. (Academic, 1985), pp. 369–406. [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.