OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 9 — Sep. 1, 2005
  • pp: 1898–1902

Controllable dark-hollow beams and their propagation characteristics

Zhangrong Mei and Daomu Zhao  »View Author Affiliations

JOSA A, Vol. 22, Issue 9, pp. 1898-1902 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new mathematical model called “controllable dark-hollow beams” is introduced to describe hollow beams. The central dark size of this beam can be controlled easily by the beam order N and parameter ϵ. An analytical formula is derived for the propagation of a controllable dark-hollow beam through a paraxial optical system, and some numerical calculations are carried out. Some important propagation characteristics of this beam, such as the beam propagation factor and the kurtosis parameter, are studied in detail, and their variation rules versus the beam order N and parameter ϵ are presented and plotted.

© 2005 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(350.5500) Other areas of optics : Propagation

Original Manuscript: December 6, 2005
Revised Manuscript: February 24, 2005
Manuscript Accepted: February 24, 2005
Published: September 1, 2005

Zhangrong Mei and Daomu Zhao, "Controllable dark-hollow beams and their propagation characteristics," J. Opt. Soc. Am. A 22, 1898-1902 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  2. Yu. B. Ovchinnikov, I. Manek, R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997). [CrossRef]
  3. Y. Song, D. Milam, W. T. Hill, “Long narrow all-light atom guide,” Opt. Lett. 24, 1805–1807 (1999). [CrossRef]
  4. J. Soding, R. Grimm, Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995). [CrossRef]
  5. X. Xu, Y. Wang, W. Jhe, “Theory of atom guidance in a hollow laser beam: dressed-atom approach,” J. Opt. Soc. Am. B 17, 1039–1050 (2002). [CrossRef]
  6. J. Yin, Y. Zhu, W. Wang, Y. Wang, W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B 15, 25–33 (1998). [CrossRef]
  7. Y. Cai, X. Lu, Q. Lin, “Hollow Gaussian Beams and their propagation properties,” Opt. Lett. 28, 1084–1086 (2003). [CrossRef] [PubMed]
  8. X. Wang, M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18, 767–768 (1993). [CrossRef] [PubMed]
  9. R. M. Herman, T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  10. H. S. Lee, B. W. Atewart, K. Choi, H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927 (1994). [CrossRef] [PubMed]
  11. C. Paterson, R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996). [CrossRef]
  12. S. Marksteiner, C. M. Savage, P. Zoller, S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994). [CrossRef] [PubMed]
  13. J. Arlt, K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  14. I. Manek, Y. B. Ovchinnikov, R. Grimm, “Generation of a hollow laser beam for atom trapping using an axion,” Opt. Commun. 147, 67–70 (1998). [CrossRef]
  15. M. de Angelis, L. Cacciapuoti, G. Pierattini, G. M. Tino, “Axially symmetric hollow beams using refractive conical lenses,” Opt. Lasers Eng. 39, 283–291 (2003) [CrossRef]
  16. J. J. Chang, “Time-resolved beam-quality characterization of copper-vapor lasers with unstable resonators,” Appl. Opt. 33, 2255–2265 (1994). [CrossRef] [PubMed]
  17. V. I. Balykin, V. S. Letokhov, “The possibility of deep laser focusing of an atomic beam into the A-region,” Opt. Commun. 64, 151–156 (1987). [CrossRef]
  18. S. A. Collins, “Lens-system diffraction integral written terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  19. A. Erdelyi, W. Magnus, F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, 1954).
  20. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]
  21. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS Lasers: Application and Issues, M. W. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 184–199.
  22. R. D. Bock, Multivariate Statistical Method in Behavioral Research (McGraw-Hill, 1975).
  23. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, 1027–1049 (1992). [CrossRef]
  24. R. Martinez-Herrero, G. Piquero, P. M. Mejias, “On the propagation of the kurtosis parameter of general beams,” Opt. Commun. 115, 225–232 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited