OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 9 — Sep. 1, 2005
  • pp: 1909–1917

Theory of the unstable Bessel resonator

Raúl I. Hernández-Aranda, Sabino Chávez-Cerda, and Julio C. Gutiérrez-Vega  »View Author Affiliations

JOSA A, Vol. 22, Issue 9, pp. 1909-1917 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rigorous analysis of the unstable Bessel resonator with convex output coupler is presented. The Huygens–Fresnel self-consistency equation is solved to extract the first eigenmodes and eigenvalues of the cavity, taking into account the finite apertures of the mirrors. Attention was directed to the dependence of the output transverse profiles; the losses; and the modal-frequency changes on the curvature of the output coupler, the cavity length, and the angle of the axicon. Our analysis revealed that while the stable Bessel resonator retains a Gaussian radial modulation on the Bessel rings, the unstable configuration exhibits a more uniform amplitude modulation that produces output profiles more similar to ideal Bessel beams. The unstable cavity also possesses higher-mode discrimination in favor of the fundamental mode than does the stable configuration.

© 2005 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators

Original Manuscript: January 5, 2005
Revised Manuscript: March 2, 2005
Manuscript Accepted: March 7, 2005
Published: September 1, 2005

Raúl I. Hernández-Aranda, Sabino Chávez-Cerda, and Julio C. Gutiérrez-Vega, "Theory of the unstable Bessel resonator," J. Opt. Soc. Am. A 22, 1909-1917 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  2. J. Durnin, J. J. Micely, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  3. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989). [CrossRef]
  4. G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. (Bellingham) 31, 2640–2643 (1992). [CrossRef]
  5. J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988). [CrossRef] [PubMed]
  6. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  7. Z. L. Horváth, M. Erdélyi, G. Szabó, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997). [CrossRef]
  8. W.-X. Cong, N.-X. Chen, B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998). [CrossRef]
  9. J. Durnin, J. H. Eberly, “Diffraction free arrangement,” U.S. patent 4,887,885 (December 19, 1989).
  10. K. Uehara, H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989). [CrossRef]
  11. P. Pääkkönen, J. Turunen, “Resonators with Bessel-Gauss modes,” Opt. Commun. 156, 359–366 (1998). [CrossRef]
  12. A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004). [CrossRef]
  13. J. Rogel-Salazar, G. H. C. New, S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001). [CrossRef]
  14. A. N. Khilo, E. G. Katranji, A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001). [CrossRef]
  15. J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical and wave-optics analysis,” J. Opt. Soc. Am. A 20, 2113–2122 (2003). [CrossRef]
  16. C. L. Tsangaris, G. H. C. New, J. Rogel-Salazar, “Unstable Bessel beam resonator,” Opt. Commun. 223, 233–238 (2003). [CrossRef]
  17. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). [CrossRef]
  18. A. E. Siegman, Lasers (University Science, 1986).
  19. B. Lissak, S. Ruschin, “Transverse pattern modifications in a stable apertured laser resonator,” Appl. Opt. 29, 767–771 (1990). [CrossRef] [PubMed]
  20. B. Duszcyk, M. P. Newell, S. J. Sugden, “Numerical methods for solving the eigenvalue problem for a positive branch confocal unstable resonator,” Appl. Math. Comput. 140, 427–443 (2003). [CrossRef]
  21. A. E. Siegman, “Unstable optical resonators,” Appl. Opt. 13, 353–367 (1974). [CrossRef] [PubMed]
  22. W. D. Murphy, M. L. Bernabe, “Numerical procedures for solving nonsymmetric eigenvalue problems associated with optical resonators,” Appl. Opt. 17, 2358–2365 (1978). [CrossRef] [PubMed]
  23. W. P. Latham, G. C. Dente, “Matrix methods for bare resonator eigenvalue analysis,” Appl. Opt. 19, 1618–1621 (1980). [CrossRef] [PubMed]
  24. M. Guizar-Sicairos, J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21, 53–58 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited