## Theory of the unstable Bessel resonator

JOSA A, Vol. 22, Issue 9, pp. 1909-1917 (2005)

http://dx.doi.org/10.1364/JOSAA.22.001909

Acrobat PDF (248 KB)

### Abstract

A rigorous analysis of the unstable Bessel resonator with convex output coupler is presented. The Huygens-Fresnel self-consistency equation is solved to extract the first eigenmodes and eigenvalues of the cavity, taking into account the finite apertures of the mirrors. Attention was directed to the dependence of the output transverse profiles; the losses; and the modal-frequency changes on the curvature of the output coupler, the cavity length, and the angle of the axicon. Our analysis revealed that while the stable Bessel resonator retains a Gaussian radial modulation on the Bessel rings, the unstable configuration exhibits a more uniform amplitude modulation that produces output profiles more similar to ideal Bessel beams. The unstable cavity also possesses higher-mode discrimination in favor of the fundamental mode than does the stable configuration.

© 2005 Optical Society of America

**OCIS Codes**

(140.3300) Lasers and laser optics : Laser beam shaping

(140.3410) Lasers and laser optics : Laser resonators

(140.4780) Lasers and laser optics : Optical resonators

**Citation**

Raúl I. Hernández-Aranda, Sabino Chávez-Cerda, and Julio C. Gutiérrez-Vega, "Theory of the unstable Bessel resonator," J. Opt. Soc. Am. A **22**, 1909-1917 (2005)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-9-1909

Sort: Year | Journal | Reset

### References

- J. Durnin, "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A 4, 651-654 (1987).
- J. Durnin, J. J. Micely, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
- G. Indebetouw, "Nondiffracting optical fields: some remarks on their analysis and synthesis," J. Opt. Soc. Am. A 6, 150-152 (1989).
- G. Scott and N. McArdle, "Efficient generation of nearly diffraction-free beams using an axicon," Opt. Eng. (Bellingham) 31, 2640-2643 (1992).
- J. Turunen, A. Vasara, and A. T. Friberg, "Holographic generation of diffraction-free beams," Appl. Opt. 27, 3959-3962 (1988).
- A. Vasara, J. Turunen, and A. T. Friberg, "Realization of general nondiffracting beams with computer-generated holograms," J. Opt. Soc. Am. A 6, 1748-1754 (1989).
- Z. L. Horváth, M. Erdélyi, G. Szabó, Zs. Bor, F. K. Tittel, and J. R. Cavallaro, "Generation of nearly nondiffracting Bessel beams with a Fabry-Perot interferometer," J. Opt. Soc. Am. A 14, 3009-3013 (1997).
- W.-X. Cong, N.-X. Chen, and B.-Y. Gu, "Generation of nondiffracting beams by diffractive phase elements," J. Opt. Soc. Am. A 15, 2362-2364 (1998).
- J. Durnin and J. H. Eberly, "Diffraction free arrangement," U.S. patent 4,887,885 (December 19, 1989).
- K. Uehara and H. Kikuchi, "Generation of nearly diffraction-free laser beams," Appl. Phys. B 48, 125-129 (1989).
- P. Pääkkönen and J. Turunen, "Resonators with Bessel-Gauss modes," Opt. Commun. 156, 359-366 (1998).
- A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, "Bessel-Gauss output beam from a diode-pumped NdYAG laser," Opt. Commun. 238, 335-340 (2004).
- J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, "Bessel-Gauss beam optical resonator," Opt. Commun. 190, 117-122 (2001).
- A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, "Axicon-based Bessel resonator: analytical description and experiment," J. Opt. Soc. Am. A 18, 1986-1992 (2001).
- J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, "Bessel-Gauss resonator with spherical output mirror: geometrical and wave-optics analysis," J. Opt. Soc. Am. A 20, 2113-2122 (2003).
- C. L. Tsangaris, G. H. C. New, and J. Rogel-Salazar, "Unstable Bessel beam resonator," Opt. Commun. 223, 233-238 (2003).
- A. G. Fox and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J. 40, 453-488 (1961).
- A. E. Siegman, Lasers (University Science, 1986).
- B. Lissak and S. Ruschin, "Transverse pattern modifications in a stable apertured laser resonator," Appl. Opt. 29, 767-771 (1990).
- B. Duszcyk, M. P. Newell, and S. J. Sugden, "Numerical methods for solving the eigenvalue problem for a positive branch confocal unstable resonator," Appl. Math. Comput. 140, 427-443 (2003).
- A. E. Siegman, "Unstable optical resonators," Appl. Opt. 13, 353-367 (1974).
- W. D. Murphy and M. L. Bernabe, "Numerical procedures for solving nonsymmetric eigenvalue problems associated with optical resonators," Appl. Opt. 17, 2358-2365 (1978).
- W. P. Latham, Jr., and G. C. Dente, "Matrix methods for bare resonator eigenvalue analysis," Appl. Opt. 19, 1618-1621 (1980).
- M. Guizar-Sicairos and J. C. Gutiérrez-Vega, "Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields," J. Opt. Soc. Am. A 21, 53-58 (2004).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.