OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 9 — Sep. 1, 2005
  • pp: 1918–1928

Rotational invariance approach for the evaluation of multiple phases in interferometry in the presence of nonsinusoidal waveforms and noise

Abhijit Patil and Pramod Rastogi  »View Author Affiliations


JOSA A, Vol. 22, Issue 9, pp. 1918-1928 (2005)
http://dx.doi.org/10.1364/JOSAA.22.001918


View Full Text Article

Enhanced HTML    Acrobat PDF (334 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Incorporation of two phase-shifting devices in a holographic moiré configuration not only renders the interferometer compatible with automated measurements but also allows for simultaneous measurement of multiple phase information in the interferometer. However, simultaneous handling of multiple phase steps and subsequent simultaneous determination of multiple phase distributions requires the introduction of novel tools in phase-shifting interferometry. In this context, the aim of this paper is to propose a subspace invariance approach to address these issues. This approach takes advantage of the rotational invariance of signal subspaces spanned by two temporally displaced data sets formed from the intensity fringes recorded temporally on pixels of the CCD camera. The method first identifies the arbitrary phase steps imparted to the piezoactuator devices. The estimated phase steps are subsequently applied in the linear Vandermonde system of equations to determine the phase distributions. The method also allows for handling nonsinusoidal wavefronts. Since the phase steps are extracted at every point on the interferogram, the method is applicable to configurations that use spherical beams. The robustness of the method is investigated by adding white Gaussian noise during the simulations.

© 2005 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

History
Original Manuscript: January 3, 2005
Manuscript Accepted: February 16, 2005
Published: September 1, 2005

Citation
Abhijit Patil and Pramod Rastogi, "Rotational invariance approach for the evaluation of multiple phases in interferometry in the presence of nonsinusoidal waveforms and noise," J. Opt. Soc. Am. A 22, 1918-1928 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-9-1918


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966). [CrossRef]
  2. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  3. K. Creath, “Phase-shifting holographic interferometry,” Holographic Interferometry, P. K. Rastogi, ed. (Springer Series in Optical Sciences, 1994), Vol. 68, pp. 109–150. [CrossRef]
  4. T. Kreis, Holographic Interferometry Principles and Methods (Akademie Verlag, 1996) pp. 101–170.
  5. J. E. Greivenkamp, J. H. Bruning, Phase shifting interferometryOptical Shop Testing, D. Malacara, ed. (Wiley, 1992) pp. 501-598.
  6. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: Some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef] [PubMed]
  7. Y. Zhu, T. Gemma, “Method for designing error-compensating phase-calculation algorithms for phase-shifting interferometry,” Appl. Opt. 40, 4540–4546 (2001). [CrossRef]
  8. P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987). [CrossRef] [PubMed]
  9. J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, “New compensating four-phase algorithm for phase-shift interferometry,” Opt. Eng. (Bellingham) 32, 1883–1885 (1993). [CrossRef]
  10. Y. Surrel, “Phase stepping: a new self-calibrating algorithm,” Appl. Opt. 32, 3598–3600 (1993). [CrossRef] [PubMed]
  11. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef] [PubMed]
  12. J. van Wingerden, H. J. Frankena, C. Smorenburg, “Linear approximation for measurement errors in phase shifting interferometry,” Appl. Opt. 30, 2718–2729 (1991). [CrossRef] [PubMed]
  13. K. G. Larkin, B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740–1748 (1992). [CrossRef]
  14. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase shifting for nonsinusoidal waveforms with phase-shift errors,” J. Opt. Soc. Am. A 12, 761–768 (1995). [CrossRef]
  15. Y.-Y. Cheng, J. C. Wyant, “Phase-shifter calibration in phase-shifting interferometry,” Appl. Opt. 24, 3049–3052 (1985). [CrossRef]
  16. B. Zhao, “A statistical method for fringe intensity-correlated error in phase-shifting measurement: The effect of quantization error on the N-bucket algorithm,” Meas. Sci. Technol. 8, 147–153 (1997). [CrossRef]
  17. B. Zhao, Y. Surrel, “Effect of quantization error on the computed phase of phase-shifting measurements,” Appl. Opt. 36, 2070–2075 (1997). [CrossRef] [PubMed]
  18. R. Józwicki, M. Kujawinska, M. Salbut, “New contra old wavefront measurement concepts for interferometric optical testing,” Opt. Eng. (Bellingham) 31, 422–433 (1992). [CrossRef]
  19. P. de Groot, “Vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 12, 354–365 (1995). [CrossRef]
  20. P. de Groot, L. L. Deck, “Numerical simulations of vibration in phase-shifting interferometry,” Appl. Opt. 35, 2172–2178 (1996). [CrossRef] [PubMed]
  21. C. Rathjen, “Statistical properties of phase-shift algorithms,” J. Opt. Soc. Am. A 12, 1997–2008 (1995). [CrossRef]
  22. P. L. Wizinowich, “Phase-shifting interferometry in the presence of vibration: A new algorithm and system,” Appl. Opt. 29, 3271–3279 (1990). [CrossRef] [PubMed]
  23. C. Joenathan, B. M. Khorana, “Phase measurement by differentiating interferometric fringes,” J. Mod. Opt. 39, 2075–2087 (1992). [CrossRef]
  24. K. Kinnnstaetter, A. W. Lohmann, J Schwider, N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082–5089 (1988). [CrossRef]
  25. C. J. Morgan, “Least squares estimation in phase-measurement interferometry,” Opt. Lett. 7, 368–370 (1982). [CrossRef] [PubMed]
  26. J. E. Grievenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. (Bellingham) 23, 350–352 (1984).
  27. P. K. Rastogi, “Phase shifting applied to four-wave holographic interferometers,” Appl. Opt. 31, 1680–1681 (1992). [CrossRef] [PubMed]
  28. P. K. Rastogi, “Phase-shifting holographic moiré: Phase-shifter error-insensitive algorithms for the extraction of the difference and sum of phases in holographic moiré,” Appl. Opt. 32, 3669–3675 (1993). [CrossRef] [PubMed]
  29. R. Roy, T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal Process. 37, 984–995 (1989). [CrossRef]
  30. J. J. Fuchs, “Estimating the number of sinusoids in additive white noise,” IEEE Trans. Acoust., Speech, Signal Process. 36, 1846–1853 (1988). [CrossRef]
  31. P. K. Rastogi, M. Spajer, J. Monneret, “In-plane deformation measurement using holographic moiré,” Opt. Lasers Eng. 2, 79–103 (1981). [CrossRef]
  32. T. Söderström, P. Stoica, “Accuracy of high-order Yule–Walker methods for frequency estimation of complex sine waves,” IEE Proc. F, Radar Signal Process. 140, 71–80 (1993). [CrossRef]
  33. R. Kumaresan, D. W. Tufts, “Estimating the angles of arrival of multiple plane waves,” IEEE Trans. Aerosp. Electron. Syst. AES-19, 134–139 (1983). [CrossRef]
  34. B. D. Rao, K. V.S. Hari, “Weighted subspace methods and spatial smoothing: analysis and comparison,” IEEE Trans. Signal Process. 41, 788–803 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited