OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 9 — Sep. 1, 2005
  • pp: 1952–1967

Extending the Clapper–Yule model to rough printing supports

Mathieu Hébert and Roger David Hersch  »View Author Affiliations


JOSA A, Vol. 22, Issue 9, pp. 1952-1967 (2005)
http://dx.doi.org/10.1364/JOSAA.22.001952


View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Clapper–Yule model is the only classical spectral reflection model for halftone prints that takes explicitly into account both the multiple internal reflections between the print–air interface and the paper substrate and the lateral propagation of light within the paper bulk. However, the Clapper–Yule model assumes a planar interface and does not take into account the roughness of the print surface. In order to extend the Clapper–Yule model to rough printing supports (e.g., matte coated papers or calendered papers), we model the print surface as a set of randomly oriented microfacets. The influence of the shadowing effect is evaluated and incorporated into the model. By integrating over all incident angles and facet orientations, we are able to express the internal reflectance of the rough interface as a function of the rms facet slope. By considering also the rough interface transmittances both for the incident light and for the emerging light, we obtain a generalization of the Clapper–Yule model for rough interfaces. The comparison between the classical Clapper–Yule model and the model extended to rough surfaces shows that the influence of the surface roughness on the predicted reflectance factor is small. For high-quality papers such as coated and calendered papers, as well as for low-quality papers such as newsprint or copy papers, the influence of surface roughness is negligible, and the classical Clapper–Yule model can be used to predict the halftone-print reflectance factors. The influence of roughness becomes significant only for very rough and thick nondiffusing coatings.

© 2005 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(100.2810) Image processing : Halftone image reproduction
(160.0160) Materials : Materials
(240.5770) Optics at surfaces : Roughness
(330.1710) Vision, color, and visual optics : Color, measurement

History
Original Manuscript: October 13, 2004
Revised Manuscript: January 28, 2005
Manuscript Accepted: February 9, 2005
Published: September 1, 2005

Citation
Mathieu Hébert and Roger David Hersch, "Extending the Clapper–Yule model to rough printing supports," J. Opt. Soc. Am. A 22, 1952-1967 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-9-1952

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited