OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 1 — Jan. 1, 2006
  • pp: 179–186

Apodized multilevel diffractive lenses that produce desired diffraction-limited focal spots

Qing Cao and Jürgen Jahns  »View Author Affiliations

JOSA A, Vol. 23, Issue 1, pp. 179-186 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An apodized, multilevel diffractive lens that can produce a desired diffraction-limited focal spot is proposed for many applications, such as focusing, imaging, optical storage, and optical trapping. The three key points for the design are the innovative idea of complex conjugate subzones, the use of Babinet’s principle, and the equivalent-pupil (or aperture) function theory of diffractive focusing elements composed of concentric transparent rings. As a concrete example, we numerically design a mixed multilevel diffractive lens (the highest phase level is 8) to produce a diffraction-limited Gaussian focal spot. Some related problems, such as the validity range and the combination with high-numerical-aperture refractive lenses, are also discussed.

© 2006 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(110.0110) Imaging systems : Imaging systems
(110.1220) Imaging systems : Apertures
(220.1230) Optical design and fabrication : Apodization
(220.2560) Optical design and fabrication : Propagating methods
(220.3630) Optical design and fabrication : Lenses

ToC Category:

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Qing Cao and Jürgen Jahns, "Apodized multilevel diffractive lenses that produce desired diffraction-limited focal spots," J. Opt. Soc. Am. A 23, 179-186 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975), Subsect. 8.6.2.
  2. S. Sinzinger and J. Jahns, Microoptics, 2nd ed. (Wiley-VCH, 2003), Subsect. 6.3.6. [CrossRef]
  3. R. Brunner, M. Burkhardt, A. Pesch, O. Sandfuchs, M. Ferstl, S. Hohng, and J. O. White, "Diffraction-based solid immersion lens," J. Opt. Soc. Am. A 21, 1186-1191 (2004). [CrossRef]
  4. M. Kuittinen and H. P. Herzig, "Encoding of efficient diffractive microlenses," Opt. Lett. 20, 2156-2158 (1995). [CrossRef] [PubMed]
  5. U. Levy, D. Mendlovic, and E. Marom, "Efficiency analysis of diffractive lenses," J. Opt. Soc. Am. A 18, 86-93 (2001). [CrossRef]
  6. A. V. Baez, "Fresnel zone plate for optical image formation using extreme ultraviolet and soft x radiation," J. Opt. Soc. Am. 51, 405-412 (1961). [CrossRef]
  7. C. D. Pfeifer, L. D. Ferris, and W. M. Yen, "Optical image formation with a Fresnel zone plate using vacuum-ultraviolet radiation," J. Opt. Soc. Am. 63, 91-95 (1973). [CrossRef]
  8. G. Schmahl, D. Rudolph, P. Guttmann, and O. Christ, "Zone plates for x-ray microscopy," in X-ray Microscopy, G.Schmahl and D.Rudolph, eds. (Springer-Verlag, 1984), Vol. 43, pp. 63-74.
  9. D. J. Stigliani, R. Mittra, and R. G. Semonin, "Resolving power of a zone plate," J. Opt. Soc. Am. 57, 610-613 (1967). [CrossRef]
  10. H. Arsenault, "Diffraction theory of Fresnel zone plates," J. Opt. Soc. Am. 58, 1536 (1968). [CrossRef]
  11. J. A. Sun and A. Cai, "Archaic focusing properties of Fresnel zone plates," J. Opt. Soc. Am. A 8, 33-35 (1991). [CrossRef]
  12. E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, "Nanofabrication and diffractive optics for high-resolution x-ray applications," J. Vac. Sci. Technol. B 18, 2970-2975 (2000). [CrossRef]
  13. W. Chao, E. Anderson, G. P. Denbeaux, B. Harteneck, J. A. Liddle, D. L. Olynick, A. L. Pearson, F. Salmassi, C. Y. Song, and D. T. Attwood, "20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer test structures," Opt. Lett. 28, 2019-2021 (2003). [CrossRef] [PubMed]
  14. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft x-rays with photon sieves," Nature (London) 414, 184-188 (2001). [CrossRef]
  15. Q. Cao and J. Jahns, "Focusing analysis of the pinhole photon sieve: individual far-field model," J. Opt. Soc. Am. A 19, 2387-2393 (2002). [CrossRef]
  16. Q. Cao and J. Jahns, "Nonparaxial model for the focusing of high-numerical-aperture photon sieves," J. Opt. Soc. Am. A 20, 1005-1012 (2003). [CrossRef]
  17. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, "Photon-sieve lithography," J. Opt. Soc. Am. A 22, 342-345 (2005). [CrossRef]
  18. G. E. Artzner, J. P. Delaboudinière, and X. Y. Song, "Photon sieves as EUV telescopes for solar orbiter," in Innovative Telescopes and Instrumentations for Solar Astrophysics, S.L.Keil, S.V.Avakyan, and S.I.Vavilov, eds., Proc. SPIE 4853, 158-161 (2003).
  19. M. Howells, http://www-esg.lbl.gov/esg/personnel/howells/Xraysieves.pdf.
  20. M. J. Simpson and A. G. Michette, "Imaging properties of modified Fresnel zone plates," Opt. Acta 31, 403-413 (1984). [CrossRef]
  21. Q. Cao and J. Jahns, "Modified Fresnel zone plates that produce sharp Gaussian focal spots," J. Opt. Soc. Am. A 20, 1576-1581 (2003). [CrossRef]
  22. Q. Cao and J. Jahns, "Comprehensive focusing analysis of various Fresnel zone plates," J. Opt. Soc. Am. A 21, 561-571 (2004). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Subsect. 2.1.5.
  24. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975), Section 9.11.
  25. R. L. Morrison, "Symmetries that simplify the design of spot array phase gratings," J. Opt. Soc. Am. A 9, 464-471 (1992). [CrossRef]
  26. Y. Komma, S. Kadowaki, S. Nishino, Y. Hori, and M. Kato, "A holographic optical element for an integrated optical head," Opt. Rev. 3, 251-257 (1996). [CrossRef]
  27. R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, "Diffractive-refractive hybrid microscope objective for193-nm inspection systems," in Gradient Index, Miniature, and Diffractive Optical Systems III, T.J.Suleski, Proc. SPIE 5177, 9-15 (2003).
  28. T. Stone and N. George, "Hybrid diffractive-refractive lenses and achromats," Appl. Opt. 27, 2960-2971 (1988). [CrossRef] [PubMed]
  29. N. Davidson, A. A. Friesem, and E. Hasman, "Analytic design of hybrid diffractive-refractive achromats," Appl. Opt. 32, 4770-4774 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited