OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2433–2439

Inverse scattering for rotationally scanned optical coherence tomography

Daniel L. Marks, Tyler S. Ralston, P. Scott Carney, and Stephen A. Boppart  »View Author Affiliations

JOSA A, Vol. 23, Issue 10, pp. 2433-2439 (2006)

View Full Text Article

Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography of luminal structures, such as for intravascular or gastrointestinal imaging, is performed by using a fiber-optic catheter as a beam-delivery probe. The interrogating beam is scanned angularly by rotating the fiber around a fixed central axis. Because the beam is focused only at a fixed distance from the center of the fiber, only scatterers near this distance are resolved. We present a solution of the inverse scattering problem that provides an estimate of the susceptibility of the sample for an angularly scanned Gaussian beam focused at a fixed distance from the origin. This solution provides quantitatively meaningful reconstructions while also extending the volume of the sample that is resolvable by the instrument.

© 2006 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Image Processing

Original Manuscript: January 23, 2006
Revised Manuscript: April 20, 2006
Manuscript Accepted: May 16, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Daniel L. Marks, Tyler S. Ralston, P. Scott Carney, and Stephen A. Boppart, "Inverse scattering for rotationally scanned optical coherence tomography," J. Opt. Soc. Am. A 23, 2433-2439 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
  2. B. E. Bouma and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2001).
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, and J. F. Southern, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
  4. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., and J. A. Izatt, "Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design," Opt. Lett. 24, 1358-1360 (1999).
  5. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, A. V. Shakhov, N. M. Shakhova, L. B. Snopova, A. B. Terent'eva, E. V. Zagainova, Y. P. Chumakov, and I. A. Kuznetova, "Endoscopic applications of optical coherence tomography," Opt. Express 3, 257-270 (l998).
  6. V. X. D. Yang, M. L. Gordon, S.-J. Tang, N. E. Marcon, G. Gardiner, B. Qi, B. Stuart, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and V. I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part iii): in vivo endoscopic imaging on blood flow in the rat and human gastrointestinal tracts," Opt. Express 11, 2416-2424 (2003).
  7. G. J. Tearney, S. A. Boppart, B. E. Bunma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber-optic catheter endoscope for optical coherence tomography," Opt. Lett. 21, 543-545 (1996).
  8. X. Li, T. H. Ko, and J. G. Fujimoto, "Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography," Opt. Lett. 26, 1906-1908 (2001).
  9. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsuing, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, "Micromotor endoscope catheter for in vivo, ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2261-2263 (2004).
  10. B. E. Bouma and G. J. Tearney, "Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography," Opt. Lett. 24, 531-533 (1999).
  11. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, and H. T. Aretz, "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound," J. Am. Coll. Cardiol. 39, 604-609 (2002).
  12. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering problem for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006).
  13. B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, "Evaluation of intracoronary stenting by intravascular optical coherence tomography," Heart 89, 317-320 (2003).
  14. B. D. MacNeill, B. E. Bouma, H. Yabushita, I. K. Jang, and G. J. Tearney, "Intravascular optical coherence tomography: cellular imaging," J. Nucl. Cardiol. 12, 460-465 (2005).
  15. I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, "In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography," Circulation 111, 1551-1555 (2005).
  16. M. A. Haun, D. L. Jones, and W. D. O'Brien, Jr., "Efficient three-dimensional imaging from a small cylindrical aperture," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 861-870 (2002).
  17. S. J. Norton and M. Linzer, "Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures," IEEE Trans. Biomed. Eng. BME-28, 202-220 (1981).
  18. C. J. Nolan and M. Cheney, "Synthetic aperture inversion," Inverse Probl. 18, 221-235 (2002).
  19. H. Hellsten and L. E. Andersson, "An inverse method for the processing of synthetic aperture radar data," Inverse Probl. 3, 111-124 (1987).
  20. L. M. H. Ulander, H. Hellsten, and G. Stenstrom, "Synthetic aperture radar processing using fast factorized back-projection," IEEE Trans. Aerosp. Electron. Syst. 39, 760-776 (2003).
  21. J. A. Fawcett, "Inversion of N-dimensional spherical averages," SIAM J. Appl. Math. 45, 336-341 (1985).
  22. C. H. Frazier and W. D. O'Brien, Jr., "Synthetic aperture techniques with a virtual source element," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 196-207 (l998).
  23. K. J. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, "Synthetic aperture focusing technique signal processing," NDT Int. 19, 177-189 (1986).
  24. D. Vray, C. Haas, T. Rastello, M. Krueger, E. Brusseau, K. Schroeder, G. Gimenez, and H. Ermert, "Synthetic aperture-based beam compression for intravascular ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 189-201 (2001).
  25. P. Edholm and G. T. Herman, "Linograms in image reconstruction from projections," IEEE Trans. Med. Imaging MI-6, 301-307 (1987).
  26. S. Basu and Y. Bresler, "O(N2 log2N) filtered backprojection reconstruction algorithm for tomography," IEEE Trans. Image Process. 9, 1760-1773 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited