OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2747–2755

Role of beat noise in limiting the sensitivity of optical coherence tomography

Richard C. Haskell, David Liao, Adam E. Pivonka, Tera L. Bell, Brendan R. Haberle, Barbara M. Hoeling, and Daniel C. Petersen  »View Author Affiliations


JOSA A, Vol. 23, Issue 11, pp. 2747-2755 (2006)
http://dx.doi.org/10.1364/JOSAA.23.002747


View Full Text Article

Enhanced HTML    Acrobat PDF (372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sensitivity and dynamic range of optical coherence tomography (OCT) are calculated for instruments utilizing two common interferometer configurations and detection schemes. Previous researchers recognized that the performance of dual-balanced OCT instruments is severely limited by beat noise, which is generated by incoherent light backscattered from the sample. However, beat noise has been ignored in previous calculations of Michelson OCT performance. Our measurements of instrument noise confirm the presence of beat noise even in a simple Michelson interferometer configuration with a single photodetector. Including this noise, we calculate the dynamic range as a function of OCT light source power, and find that instruments employing balanced interferometers and balanced detectors can achieve a sensitivity up to six times greater than those based on a simple Michelson interferometer, thereby boosting image acquisition speed by the same factor for equal image quality. However, this advantage of balanced systems is degraded for source powers greater than a few milliwatts. We trace the concept of beat noise back to an earlier paper [ J. Opt. Soc. Am. 52, 1335 (1962) ].

© 2006 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(110.4280) Imaging systems : Noise in imaging systems
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: June 10, 2005
Revised Manuscript: May 25, 2006
Manuscript Accepted: May 26, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Richard C. Haskell, David Liao, Adam E. Pivonka, Tera L. Bell, Brendan R. Haberle, Barbara M. Hoeling, and Daniel C. Petersen, "Role of beat noise in limiting the sensitivity of optical coherence tomography," J. Opt. Soc. Am. A 23, 2747-2755 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-11-2747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992). [CrossRef]
  2. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-153 (1992). [CrossRef] [PubMed]
  3. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, "High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source," Opt. Lett. 20, 1486-1488 (1995). [CrossRef] [PubMed]
  4. K. Takada, "Noise in optical low-coherence reflectometry," IEEE J. Quantum Electron. 34, 1098-1108 (1998). [CrossRef]
  5. A. Rollins and J. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999). [CrossRef]
  6. A. Gh. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system," Appl. Opt. 39, 173-182 (2000). [CrossRef]
  7. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., and J. A. Izatt, "Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design," Opt. Lett. 24, 1358-1360 (1999). [CrossRef]
  8. T. Yoshino, M. R. Ali, and B. C. Sarker, "Performance analysis of low-coherence interferometry, taking into consideration optical beat noise," J. Opt. Soc. Am. B 22, 328-335 (2005). [CrossRef]
  9. B. E. Bouma and G. J. Tearney, "Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography," Opt. Lett. 24, 531-533 (1999). [CrossRef]
  10. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  11. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  12. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  13. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, and S. E. Fraser, "An optical coherence microscope for 3-dimensional imaging in developmental biology," Opt. Express 6, 136-146 (2000). [CrossRef] [PubMed]
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995), Chap. 9.
  15. P. R. Morkel, R. I. Laming, and D. N. Payne, "Noise characteristics of high-power doped-fibre superluminescent sources," Electron. Lett. 26, 96-98 (1990). [CrossRef]
  16. H. Hodara, "Statistics of thermal and laser radiation," Proc. IEEE 53, 696-704 (1965). [CrossRef]
  17. L. Mandel, "Interference and the Alford and Gold effect," J. Opt. Soc. Am. 52, 1335-1340 (1962). [CrossRef]
  18. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, and D. C. Petersen, "Phase modulation at 125 kHz in a Michelson interferometer using an inexpensive piezoelectric stack driven at resonance," Rev. Sci. Instrum. 72, 1630-1633 (2001). [CrossRef]
  19. B. M. Hoeling, M. E. Peter, D. C. Petersen, and R. C. Haskell, "Improved phase modulation for an en-face scanning 3D optical coherence microscope," Rev. Sci. Instrum. 75, 3348-3350 (2004). [CrossRef]
  20. H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52, 1965-1979 (2005). [CrossRef]
  21. U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electron. 11, 799-805 (2005). [CrossRef]
  22. C. C. Rosa and A. Gh. Podoleanu, "Limitation of the achievable signal-to-noise ratio in optical coherence tomography due to mismatch of the balanced receiver," Appl. Opt. 43, 4802-4815 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited