OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2906–2911

Directional dependence of spectra of fiber Bragg gratings due to excess loss

Daniel J. Kitcher, Anbhawa Nand, Scott A. Wade, Rhys Jones, Greg W. Baxter, and Stephen F. Collins  »View Author Affiliations


JOSA A, Vol. 23, Issue 11, pp. 2906-2911 (2006)
http://dx.doi.org/10.1364/JOSAA.23.002906


View Full Text Article

Enhanced HTML    Acrobat PDF (93 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reflectance spectra of chirped fiber Bragg gratings can depend substantially on the direction from which the measurement is taken. The measured difference between forward and backward reflectance spectra measured in a linearly chirped grating was shown to be due to the measured excess loss. Simulation using the popular transfer-matrix model demonstrated that the observed asymmetric behavior could be obtained only when excess loss has an asymmetric spectral shape about the local Bragg wavelengths. Application of cladding mode excess losses to the result of a transfer-matrix model accounted for the experimental observation.

© 2006 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 3, 2006
Manuscript Accepted: May 25, 2006

Citation
Daniel J. Kitcher, Anbhawa Nand, Scott A. Wade, Rhys Jones, Greg W. Baxter, and Stephen F. Collins, "Directional dependence of spectra of fiber Bragg gratings due to excess loss," J. Opt. Soc. Am. A 23, 2906-2911 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-11-2906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Pan and Y. Shi, "Steep skirt fibre Bragg grating fabrication using a new apodised phase mask," Electron. Lett. 33, 1895-1896 (1997). [CrossRef]
  2. R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, "Novel method of producing all fiber photoinduced compensating gratings," Electron. Lett. 30, 996-998 (1994). [CrossRef]
  3. T. Komukai and M. Nakazawa, "Long-phase error-free fiber Bragg gratings," IEEE Photon. Technol. Lett. 10, 687-689 (1998). [CrossRef]
  4. Y. Nasu and S. Yamashita, "Multiple phase-shift superstructure fibre Bragg grating for DWDM systems," Electron. Lett. 37, 1470-1471 (2001). [CrossRef]
  5. M. Nakazawa and T. Komukai, "Fabrication of high-quality long-fiber Bragg grating by monitoring 3.1-eV radiation (400 nm) from GeO defects," IEEE Photon. Technol. Lett. 8, 1495-1497 (1996). [CrossRef]
  6. R. Kashap, Fiber Bragg Gratings (Academic, 1999).
  7. L. Poladian, "Resonance mode expansions and exact solutions for nonuniform gratings," Phys. Rev. E 54, 2963-2975 (1996). [CrossRef]
  8. V. M. N. Passaro, R. Diana, and M. N. Armenise, "Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays," J. Opt. Soc. Am. A 19, 1855-1866 (2002). [CrossRef]
  9. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001). [CrossRef]
  10. M. McCall, "On the application of coupled mode theory for modeling fiber Bragg gratings," J. Lightwave Technol. 18, 236-242 (2000). [CrossRef]
  11. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989). [CrossRef] [PubMed]
  12. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  13. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1302 (1997). [CrossRef]
  14. F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett. 12, 847-849 (1987). [CrossRef] [PubMed]
  15. P. L. Mason, R. V. Penty, and I. H. White, "Multiple stage dispersion compensation in long haul optical fibre systems using chirped fibre Bragg gratings," Electron. Lett. 30, 1244-1245 (1994). [CrossRef]
  16. R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.
  17. D. Garthe, H. N. Rourke, G. Milner, A. Fielding, and S. J. Clements, "System performance of practical broadband dispersion compensating gratings," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 74-75.
  18. M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000). [CrossRef]
  19. H. Li, Y. Nakumura, K. Ogusu, Y. Sheng, and J. E. Rothernburg, "Influence of cladding-mode coupling losses on the spectrum of a linearly chirped multi-channel fiber Bragg grating," Opt. Express 13, 1281-1290 (2005). [CrossRef] [PubMed]
  20. M. K. Durkin, M. Ibsen, and R. I. Laming, "Equalisation of spectral non-uniformities in broad-band chirped fibre gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications andFundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 231-233.
  21. S. Huang, M. Ohn, M. LeBlanc, and R. M. Measures, "Continuous arbitrary strain profile measurements with fiber Bragg gratings," Smart Mater. Struct. 7, 248-256 (1998). [CrossRef]
  22. M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fibre gratings," Electron. Lett. 32, 1028-1029 (1996). [CrossRef]
  23. P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, "Distributed temperature sensing using a chirped fibre Bragg grating," Meas. Sci. Technol. 15, 1501-1505 (2004). [CrossRef]
  24. K. Peters, P. Pattis, J. Botsis, and P. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields," Opt. Lasers Eng. 33, 107-119 (2000). [CrossRef]
  25. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  26. R. M. Measures, "Advances toward fiber optic based smart structures," Opt. Eng. 31, 34-47 (1992). [CrossRef]
  27. Y. Okabe, R. Tsuji, and N. Takeda, "Application of chirped fiber Bragg grating sensors for identification of crack locations in composites," Composites, Part A 35, 59-65 (2004). [CrossRef]
  28. A. Nand, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, "Temperature profile measurements within a chirped fiber Bragg grating using a Fourier transform technique," in Proc. SPIE 5855, 820-823 (2005). [CrossRef]
  29. J. Skarr and H. E. Engan, "Distributed intragrating sensing using phase retrieval," in Proc. SPIE 3746, 588-591 (1999).
  30. F. Casagrande, P. Crespi, A. M. Grassi, A. Lulli, R. P. Kenny, and M. P. Whalen, "From the reflected spectrum to the properties of a fiber Bragg grating: a genetic algorithm approach with application to distributed strain sensing," Appl. Opt. 41, 5238-5243 (2002). [CrossRef] [PubMed]
  31. H. C. Cheng and Y. L. Lo, "The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra," J. Lightwave Technol. 23, 2158-2168 (2005). [CrossRef]
  32. J. Azana and M. A. Muriel, "Reconstruction of fiber grating period profiles by use of Wigner-Ville distributions and spectrograms," J. Opt. Soc. Am. A 17, 2496-2505 (2000). [CrossRef]
  33. J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003). [CrossRef]
  34. P. I. Reyes, M. Sumetsky, N. M. Litchinitser, and P. S. Westbrook, "Reduction of group delay ripple of multi-channel chirped fiber gratings using adiabatic UV correction," Opt. Express 12, 2676-2687 (2004). [CrossRef] [PubMed]
  35. A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur, "Wide tuning range and low insertion loss variation dispersion compensator," Electron. Lett. 40, 1506-1508 (2004). [CrossRef]
  36. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited