OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 12 — Dec. 1, 2006
  • pp: 3080–3105

Objective assessment of image quality. IV. Application to adaptive optics

Harrison H. Barrett, Kyle J. Myers, Nicholas Devaney, and Christopher Dainty  »View Author Affiliations

JOSA A, Vol. 23, Issue 12, pp. 3080-3105 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

© 2006 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(110.0110) Imaging systems : Imaging systems
(110.3000) Imaging systems : Image quality assessment
(110.4280) Imaging systems : Noise in imaging systems

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: November 14, 2005
Revised Manuscript: March 22, 2006
Manuscript Accepted: June 23, 2006

Harrison H. Barrett, Kyle J. Myers, Nicholas Devaney, and Christopher Dainty, "Objective assessment of image quality. IV. Application to adaptive optics," J. Opt. Soc. Am. A 23, 3080-3105 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  2. H. H. Barrett, "Objective assessment of image quality: effects of quantum noise and object variability," J. Opt. Soc. Am. A 7, 1266-1278 (1990). [CrossRef] [PubMed]
  3. H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, "Objective assessment of image quality: II. Fisher information, Fourier crosstalk, and figures of merit for task performance," J. Opt. Soc. Am. A 12, 834-852 (1995). [CrossRef]
  4. H. H. Barrett, C. K. Abbey, and E. Clarkson, "Objective assessment of image quality: III. ROC metrics, ideal observers and likelihood-generating functions," J. Opt. Soc. Am. A 15, 1520-1535 (1998). [CrossRef]
  5. H. Zhang, "Signal detection in medical imaging," Ph.D. dissertation (University of Arizona, Tucson, Ariz., 2001).
  6. M. A. Kupinski, J. W. Hoppin, E. Clarkson, and H. H. Barrett, "Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo," J. Opt. Soc. Am. A 20, 430-438 (2003). [CrossRef]
  7. S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A 22, 3-16 (2005). [CrossRef]
  8. J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992). [CrossRef] [PubMed]
  9. F. O. Bochud, F. R. Verdun, C. Hessler, and J. F. Valley, "Detectability on radiological images: the effect of the anatomical noise," in Proc. SPIE 2436, 156-164 (1995). [CrossRef]
  10. D. J. Heeger and J. R. Bergen, "Pyramid-based texture analysis and synthesis," in Computer Graphics Proceedings, SIGGRAPH 95 Conference Proceedings, R.Cook, ed. (ACM SIGGRAPH, 1995), Vol. 29, pp. 229-238.
  11. J. P. Rolland, "Synthesizing anatomical images for image understanding," in Progress in Medical Physics and Psychophysics, Vol. II of Handbook of Medical Imaging, J.Beutel, R.Van Metter, and H.L.Kundel, eds. (SPIE Press, 2000).
  12. P. Comon, "Independent component analysis: a new concept?" Signal Process. 36, 287-314 (1994). [CrossRef]
  13. A. J. Bell and T. J. Sejnowski, "The 'independent components' of natural scenes are edge filters," Vision Res. 37, 3327-3338 (1997). [CrossRef]
  14. J. L. Melsa and D. L. Cohn, Decision and Estimation Theory (McGraw-Hill, 1978).
  15. H. L. Van Trees, Detection, Estimation, and Modulation Theory (Wiley, 1968), Vol. 1.
  16. V. Samson, F. Champagnat, and J. F. Giovannelli, "Point target detection and subpixel position estimation in optical imagery," Appl. Opt. 43, 257-263 (2004). [CrossRef] [PubMed]
  17. M. P. Hobson and C. McLachlan, "A Bayesian approach to discrete object detection in astronomical data sets," Mon. Not. R. Astron. Soc. 338, 765-784 (2003). [CrossRef]
  18. W. E. Smith and H. H. Barrett, "Hotelling trace criterion as a figure of merit for the optimization of imaging systems," J. Opt. Soc. Am. A 3, 717-725 (1986). [CrossRef]
  19. R. D. Fiete, H. H. Barrett, W. E. Smith, and K. J. Myers, "The Hotelling trace criterion and its correlation with human observer performance," J. Opt. Soc. Am. A 4, 945-953 (1987). [CrossRef] [PubMed]
  20. H. Hotelling, "The generalization of Student's ratio," Ann. Math. Stat. 2, 360-378 (1931). [CrossRef]
  21. L. W. Nolte and D. Jaarsma, "More on the detection of one of M orthogonal signals," J. Acoust. Soc. Am. 41, 497-505 (1967). [CrossRef]
  22. H. H. Barrett and C. K. Abbey, "Bayesian detection of random signals on random backgrounds," in Information Processing in Medical Imaging, Vol. 1234 of Springer Lecture Notes in Computer Science, J.Duncan and G.Gindi, eds. (Springer-Verlag, 1997), pp. 155-166.
  23. R. Strickland and D. A. Hutton, "Channelized detection filters," Opt. Lett. 22, 72-74 (1997). [CrossRef] [PubMed]
  24. R. G. Swensson, "Unified measurement of observer performance in detecting and localizing target objects on images," Med. Phys. 23, 1709-1725 (1996). [CrossRef] [PubMed]
  25. H. C. Gifford, R. G. Wells, and M. A. King, "A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images," IEEE Trans. Nucl. Sci. 46, 1032-1037 (1999). [CrossRef]
  26. P. Khurd and G. Gindi, "Decision strategies that maximize the area under the LROC curve," IEEE Trans. Med. Imaging 24, 1626-1636 (2005). [CrossRef] [PubMed]
  27. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1965).
  28. H. H. Barrett, D. Lara, and J. C. Dainty, "Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions," J. Opt. Soc. Am. A (to be published). [PubMed]
  29. C. Aime and R. Soummer, "The usefulness and limits of coronagraphy in the presence of pinned speckles," Astrophys. J. Lett. 612, L85-L88 (2004). [CrossRef]
  30. A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, and B. A. Macintosh, "Speckle decorrelation and dynamic range in speckle noise-limited imaging," Astrophys. J. Lett. 581, L59-L62 (2002). [CrossRef]
  31. M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, and J. R. Graham, "The structure of high Strehl ratio point-spread functions," Astrophys. J. 596, 702-712 (2003). [CrossRef]
  32. E. E. Bloemhof, R. G. Dekany, M. Troy, and B. R. Oppenheimer, "Behavior of remnant speckles in an adaptively corrected imaging system," Astrophys. J. Lett. 558, L71-L74 (2001). [CrossRef]
  33. B. A Peterson, "Detection of faint objects," in Encyclopedia of Astronomy and Astrophysics, P.Murdin, ed. (Institute of Physics, 2005).
  34. I. S. Glass, Handbook of Infrared Astronomy (Cambridge U. Press, 1999).
  35. C. Kiss, P. Abraham, U. Klaas, D. Lemke, P. Heraudeau, C. del Burgo, and U. Herbstmeier, "Small-scale structure of the galactic cirrus emission," Astron. Astrophys. 399, 177-186 (2003). [CrossRef]
  36. M. Bertero, P. Boccacci, A. Custo, G. De Mol, and M. Robberto, "A Fourier-based method for the restoration of chopped and nodded images," Astron. Astrophys. 406, 765-772 (2003). [CrossRef]
  37. F. G. Valdes, "ACE: astronomical cataloging environment," in Astronomical Data Analysis Software and Systems X, Vol. 238 of ASP Conference Proceedings, F.R.Harnden, Jr., F.A.Primini, and H.E.Payne, eds. (Astronomical Society of the Pacific, 2001), pp. 507-510.
  38. J. L. Starck, A. Bijaoui, I. Valtchanov, and F. Murtagh, "A combined approach for object detection and deconvolution," Astron. Astrophys., Suppl. Ser. 147, 139-149 (2000). [CrossRef]
  39. A. E. Burgess, 'The Rose model, revisited," J. Opt. Soc. Am. A 16, 633-646 (1999). [CrossRef]
  40. D. Enard, A. Marechal, and J. Espiard, "Progress in ground-based optical telescopes," Rep. Prog. Phys. 59, 601-656 (1996). [CrossRef]
  41. C. Vogel, Computational Methods for Inverse Problems (SIAM, 2002). [CrossRef]
  42. M. Mayor and D. Queloz, "A Jupiter mass companion to a solar type star," Nature 378, 355-359 (1995). [CrossRef]
  43. D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, "Detection of planetary transits across a sun-like star," Astrophys. J. Lett. 529, L45-L48 (2000). [CrossRef]
  44. I. A. Bond, A. Udalski, M. Jaroszyski, N. J. Rattenbury, B. Paczyski, I. Soszyski, L. Wyrzykowski, M. K. Szymaski, M. Kubiak, O. Szewczyk, K. Ebru, G. Pietrzyski, F. Abe, D. P. Bennett, S. Eguchi, Y. Furuta, J. B. Hearnshaw, K. Kamiya, P. M. Kilmartin, Y. Kurata, K. Masuda, Y. Matsubara, Y. Muraki, S. Noda, K. Okajima, T. Sako, T. Sekiguchi, D. J. Sullivan, T. Sumi, P. J. Tristram, T. Yanagisawa, P. C. M. Yock, and The MOA and OGLE Collaborations, "OGLE 003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event," Astrophys. J. Lett. 606, L155-L158 (2004). [CrossRef]
  45. R. Neuhauser, E. W. Guenther, G. Wuchterl, M. Mugrauer, A. Bedalov, and P. H. Hauschildt, "Evidence for a co-moving sub-stellar companion of GQ Lup," Astron. Astrophys. 435, L13-L16 (2005). [CrossRef]
  46. G. Chauvin, A. M. Lagrange, C. Dumas, B. Zuckerman, D. Mouillet, I. Song, J. L. Beuzit, and P. Lowrance, "A giant planet candidate near a young brown dwarf: direct, VLT/NACO observations using IR wavefront sensing," Astron. Astrophys. 425, L29-L32 (2004). [CrossRef]
  47. R. P. Angel, "Ground-based imaging of extrasolar planets using adaptive optics," Nature 368, 203-207 (1994). [CrossRef]
  48. R. Racine, G. Walker, D. Nadeau, R. Doyon, and C. Marois, "Speckle noise and the detection of faint companions," Publ. Astron. Soc. Pac. 111, 589-594 (1999). [CrossRef]
  49. O. Guyon, "Limits of adaptive optics for high-contrast imaging," Astrophys. J. 629, 592-614 (2005). [CrossRef]
  50. C. Marois, R. Doyon, R. Racine, and D. Nadeau, "Efficient speckle noise attenuation in faint companion imaging," Publ. Astron. Soc. Pac. 112, 91-96 (2000). [CrossRef]
  51. O. Esslinger and M. G. Edmunds, "Photometry with adaptive optics: a first guide to expected performance," Astron. Astrophys., Suppl. Ser. 129, 617-635 (1998). [CrossRef]
  52. M. C. Britton, "Arroyo," in Modeling and Systems Engineering for Astronomy, S. C. Craig and M. J. Cullum, eds., Proc. SPIE 5497, 290-300 (2004). [CrossRef]
  53. M. Carbillet, L. Fini, B. Femena, A. Riccardi, S. Esposito, E. Viard, F. Delplancke, and N. Hubin, "CAOS stimulation package 3.0: an IDL-based tool for adaptive optics systems design and simulations," in Astronomical Data Analysis Software and Systems X, Vol. 238 of ASP Conference Proceedings, F.R.Harnden, Jr., F.A.Primini, and H.E.Payne, eds. (Astronomical Society of the Pacific, 2001), p. 249.
  54. B. L. Ellerbroek, "A wave optics propagation code for multi-conjugate adaptive optics," in Beyond Conventional Adaptive Optics: A Conference Devoted to the Development of Adaptive Optics for Extremely Large Telescopes, Vol. 58 of ESO Conference and Workshop Proceedings, E.Vernet, R.Ragazzoni, S.Esposito, and N.Hubin, eds. (ESO, 2002), p. 239.
  55. A. Refregier, "Shapelets--I. A method for image analysis," Mon. Not. R. Astron. Soc. 338, 35-47 (2003). [CrossRef]
  56. D. J. Tylavsky and G. R. L. Sohie, "Generalization of the matrix inversion lemma," Proc. IEEE 74, 1050-1052 (1986). [CrossRef]
  57. H. H. Barrett, C. K. Abbey, B. Gallas, and M. Eckstein, "Stabilized estimates of Hotelling-observer detection performance in patient-structured noise," Proc. SPIE 3340, 27-43 (1998). [CrossRef]
  58. B. D. Gallas and H. H. Barrett, "Validating the use of channels to estimate the ideal linear observer," J. Opt. Soc. Am. A 20, 1725-1738 (2003). [CrossRef]
  59. J. Yao and H. H. Barrett, "Predicting human performance by a channelized Hotelling observer model, in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 161-168 (1992). [CrossRef]
  60. H. H. Barrett, J. Yao, J. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. U.S.A. 90, 9758-9765 (1993). [CrossRef] [PubMed]
  61. C. K. Abbey and H. H. Barrett, "Human and model-observer performance in ramp-spectrum noise: effects of regularization and object variability," J. Opt. Soc. Am. A 18, 473-488 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited