OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 2 — Feb. 1, 2006
  • pp: 219–232

Optics of the average normal cornea from general and canonical representations of its surface topography

Rafael Navarro, Luis González, and José L. Hernández  »View Author Affiliations


JOSA A, Vol. 23, Issue 2, pp. 219-232 (2006)
http://dx.doi.org/10.1364/JOSAA.23.000219


View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Generally, the analysis of corneal topography involves fitting the raw data to a parametric geometric model that includes a regular basis surface, plus some sort of polynomial expansion to adjust the more irregular residual component. So far, these parametric models have been used in their canonical form, ignoring that the observation (keratometric) coordinate system is different from corneal axes of symmetry. Here we propose, instead, to use the canonical form when the topography is referenced to the intrinsic corneal system of coordinates, defined by its principal axes of symmetry. This idea is implemented using the general expression of an ellipsoid to fit the raw data given by the instrument. Then, the position and orientation of the three orthogonal semiaxes of the ellipsoid, which define the intrinsic Cartesian system of coordinates for normal corneas, can be identified by passing to the canonical form, by standard linear algebra. This model has been first validated experimentally obtaining significantly lower values for rms fitting error as compared with previous standard models: spherical, conical, and biconical. The fitting residual was then adjusted by a Zernike polynomial expansion. The topographies of 123 corneas were analyzed obtaining their radii of curvature, conic constants, Zernike coefficients, and the direction and position of the optical axis of the ellipsoid. The results were compared with those obtained using the standard models. The general ellipsoid model provides more negative values for the conic constants and lower apex radii (more prolate shapes) than the standard models applied to the same data. If the data are analyzed using standard models, the resulting mean shape of the cornea is consistent with previous studies, but when using the ellipsoid model we find new interesting features: The mean cornea is a more prolate ellipsoid (apical power 50 D ), the direction of the optical axis is about 2.3° nasal, and the residual term shows three Zernike coefficients significantly higher than zero (third-order trefoil and fourth- and sixth-order spherical). These three nonzero Zernike coefficients are responsible for most of the higher-order aberrations of the average cornea. Finally, we propose and implement a simple method for three-dimensional registration of corneal topographies, passing from the general to the canonical form of the ellipsoid.

© 2006 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: April 1, 2005
Revised Manuscript: July 5, 2005
Manuscript Accepted: July 8, 2005

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Rafael Navarro, Luis González, and José L. Hernández, "Optics of the average normal cornea from general and canonical representations of its surface topography," J. Opt. Soc. Am. A 23, 219-232 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-2-219

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited