OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 3 — Mar. 1, 2006
  • pp: 581–585

Mie resonances and Bragg-like multiple scattering in opacity of two-dimensional photonic crystals

Yurii N. Barabanenkov and Mikhail Yu. Barabanenkov  »View Author Affiliations


JOSA A, Vol. 23, Issue 3, pp. 581-585 (2006)
http://dx.doi.org/10.1364/JOSAA.23.000581


View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The lowest (main) and high-order Mie resonances and the Bragg-like multiple scattering of electromagnetic (EM) waves are determined as three mechanisms of formation and frequency position of two opaque bands, with narrow peaks in one of the bands in the transmission spectra of 2D photonic crystals composed of dielectric cylinders arranged parallel to the EM wave’s electric vector in the square lattice. The main Mie resonance in a single cylinder defines the frequency position of the main gap whose formation results from the Bragg-like scattering. An additional gap with narrow transmission peaks opens in the spectrum of a cylinder layer and becomes pronounced with the number of layers. It is argued that higher-order Mie resonances are responsible for the transmission peaks within the additional band of a perfect crystal. It is shown that 2D photonic crystals with a filling factor ranging from 3% to 20% at a fixed crystal period may be a good zero approximation to study wave transmission through a localizing 2D dense random medium slab.

© 2006 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.2770) Diffraction and gratings : Gratings
(260.5740) Physical optics : Resonance
(290.4210) Scattering : Multiple scattering

ToC Category:
Scattering

History
Original Manuscript: April 15, 2005
Revised Manuscript: August 3, 2005
Manuscript Accepted: August 5, 2005

Citation
Yurii N. Barabanenkov and Mikhail Yu. Barabanenkov, "Mie resonances and Bragg-like multiple scattering in opacity of two-dimensional photonic crystals," J. Opt. Soc. Am. A 23, 581-585 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-3-581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, 'Inhibited spontaneous emission in solid-state physics and electronics,' Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, 'Strong localization of photons in certain disordered dielectric superlattices,' Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, 'Donor and acceptor modes in photonic band structure,' Phys. Rev. Lett. 67, 3380-3383 (1991). [CrossRef] [PubMed]
  4. M. Sigalas, C. M. Soukoulis, E. M. Economou, C. T. Chan, and K. M. Ho, 'Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,' Phys. Rev. B 48, 14121-14126 (1993). [CrossRef]
  5. N. Garcia and A. Z. Genack, 'Anomalous photon diffusion at the threshold of the Anderson localization transition,' Phys. Rev. Lett. 66, 1850-1853 (1991). [CrossRef] [PubMed]
  6. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, 'Anderson localization of light,' Nature 390, 671-673 (1997). [CrossRef]
  7. A. A. Chabanov and A. Z. Genack, 'Photon localization in resonant media,' Phys. Rev. Lett. 87, 153901 (2001). [CrossRef] [PubMed]
  8. K. T. Compton, 'Some properties of resonance radiation and excited atoms,' Philos. Mag. 45, 750-760 (1923).
  9. E. A. Milne, 'The diffusion of imprisoned radiation through a gas,' J. Lond. Math. Soc. 1, 40-51 (1926). [CrossRef]
  10. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, 'Tight-binding parametrization for photonic band gap materials,' Phys. Rev. Lett. 81, 1405-1408 (1998). [CrossRef]
  11. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. M. Soukoulis, 'Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals,' Phys. Rev. B 64, 195113 (2001). [CrossRef]
  12. Yu. N. Barabanenkov, V. L. Kouznetsov, and M. Yu. Barabanenkov, 'Transfer relations for electromagnetic wave scattering from periodic dielectric one-dimensional interface,' in Progress in Electromagnetic Research, J.A.Kong, ed. (EMW, 1999), Vol. 24, pp. 39-75. [CrossRef]
  13. Yu. N. Barabanenkov, V. L. Kouznetsov, and M. Yu. Barabanenkov, 'Transfer relations for electromagnetic wave scattering from periodic dielectric one-dimensional interface (summary),' J. Electromagn. Waves Appl. 13, 1335-1337 (1999). [CrossRef]
  14. C. Barnes and J. B. Pendry, 'Multiple scattering of waves in random media: a transfer matrix approach,' Proc. R. Soc. London, Ser. A 435, 185-196 (1991). [CrossRef]
  15. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, 1964).
  16. E. Centeno, B. Guizal, and D. Felbacq, 'Multiplexing and demultiplexing with photonic crystals,' J. Opt. A, Pure Appl. Opt. 1, L10-L13 (1999). [CrossRef]
  17. C. A. Condat, and T. R. Kirkpatrick, 'Localization of acoustic waves,' in Scattering and Localization of Classical Waves in Random Media, P.Sheng, ed. (World Scientific, 1990).
  18. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, 'Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,' Phys. Rev. B 61, 13458-13464 (2000). [CrossRef]
  19. D. Sornette, 'Anderson localization and wave absorption,' J. Stat. Phys. 56, 669-680 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited