OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 3 — Mar. 1, 2006
  • pp: 691–700

Nonparaxial fields with maximum joint spatial–directional localization. I. Scalar case

Miguel A. Alonso, Riccardo Borghi, and Massimo Santarsiero  »View Author Affiliations


JOSA A, Vol. 23, Issue 3, pp. 691-700 (2006)
http://dx.doi.org/10.1364/JOSAA.23.000691


View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In paraxial optics, the spatial and angular localization of a beam are usually characterized through second moments in intensity. For these measures, Gaussian beams have the property of achieving a minimum angular spread for a given spatial spread (or beam waist). For wide-angle fields, however, the standard measures of spatial and angular localization become inappropriate, and new definitions must be used. Previously proposed definitions [ J. Opt. Soc. Am. A 17, 2391 (2000) ] are adopted, and the scalar monochromatic wave fields that achieve a minimum angular spread for a given spatial spread are found.

© 2006 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

History
Original Manuscript: March 15, 2005
Manuscript Accepted: August 13, 2005

Citation
Miguel A. Alonso, Riccardo Borghi, and Massimo Santarsiero, "Nonparaxial fields with maximum joint spatial-directional localization. I. Scalar case," J. Opt. Soc. Am. A 23, 691-700 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-3-691


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, 'New developments in laser resonators,' in Optical Resonators, D.A.Holmes, ed., Proc. SPIE 1224, 2-14 (1990).
  2. M. A. Porras, 'The best quality optical beam beyond the paraxial approximation,' Opt. Commun. 111, 338-349 (1994). [CrossRef]
  3. M. A. Alonso and G. W. Forbes, 'Uncertainty products for nonparaxial wave fields,' J. Opt. Soc. Am. A 17, 2391-2402 (2000). [CrossRef]
  4. T. Opatrný, 'Mean value and uncertainty in optical phase--a simple mechanical analogy,' J. Phys. A 27, 7201-7208 (1994). [CrossRef]
  5. G. W. Forbes and M. A. Alonso, 'Measures of spread for periodic distributions and the associated uncertainty relations,' Am. J. Phys. 69, 340-347 (2001). [CrossRef]
  6. R. Jackiw, 'Minimum uncertainty product, number-phase uncertainty product, and coherent states,' J. Math. Phys. 9, 339-346 (1968). [CrossRef]
  7. P. Carruthers and M. M. Nieto, 'Phase and angle variables in quantum mechanics,' Rev. Mod. Phys. 40, 411-440 (1968). [CrossRef]
  8. A. Luks and V. Perinová, 'Extended number state basis and number-phase intelligent states of light fields. I. Mapping and operator ordering approach to quantum phase problems,' Czech. J. Phys. 41, 1205-1230 (1991). [CrossRef]
  9. T. Opatrný, 'Number-phase uncertainty relations,' J. Phys. A 28, 6961-6975 (1995). [CrossRef]
  10. G. W. Forbes, M. A. Alonso, and A. E. Siegman, 'Uncertainty relations and minimum-uncertainty states for the discrete Fourier transform and the Fourier series,' J. Phys. A 36, 7027-7047 (2003). [CrossRef]
  11. S. Steinberg and K. B. Wolf, 'Invariant inner products on spaces of solutions of the Klein-Gordon and Helmholtz equations,' J. Math. Phys. 22, 1660-1663 (1981). [CrossRef]
  12. M. A. Alonso, 'Measurement of Helmholtz wave fields,' J. Opt. Soc. Am. A 17, 1256-1264 (2000). [CrossRef]
  13. J. Durnin, 'Exact solutions for nondiffracting beams,' J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  14. J. C. Gutiérrez-Vega and M. A. Bandres, 'Helmholtz-Gauss waves,' J. Opt. Soc. Am. A 22, 289-298 (2005). [CrossRef]
  15. N. W. McLachlan, Theory and Applications of Mathieu Functions (Dover, 1964), p. 10.
  16. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Harcourt, 2001), p. 787.
  17. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  18. R. Borghi, 'On the angular-spectrum representation of multipole wavefields,' J. Opt. Soc. Am. A 21, 1805-1810 (2004). [CrossRef]
  19. C. J. R. Sheppard, 'High-aperture beams,' J. Opt. Soc. Am. A 18, 1579-1587 (2001). [CrossRef]
  20. M. Alonso, R. Borghi, and M. Santarsiero, 'Joint spatial-directional localization features of wave fields focused at a complex point,' J. Opt. Soc. Am. A (to be published).
  21. M. Alonso, R. Borghi, and M. Santarsiero, 'Nonparaxial fields with maximum joint spatial-directional localization. II. Vectorial case,' J. Opt. Soc. Am. A 23, 701-712 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited