OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 3 — Mar. 1, 2006
  • pp: 723–729

Impurity and free-carrier effects on the far-infrared dispersion spectrum of silicon

William Karstens, David C. Bobela, and D. Y. Smith  »View Author Affiliations


JOSA A, Vol. 23, Issue 3, pp. 723-729 (2006)
http://dx.doi.org/10.1364/JOSAA.23.000723


View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a generalized Cauchy power-series expansion for the index of refraction of an n-type elemental semiconductor in the region of IR transparency. A plot of index versus photon energy squared should be very nearly linear if all absorptions lie above the transparent region. However, free carriers produce far-IR absorption, and the dispersive signature of this is a deviation from linearity in the mid- to far-IR. By retaining terms with negative exponents in the index expansion, we find a substantially improved fit to index measurements. Moreover, the free-carrier density may be determined from the coefficients in the regression fit. The method has been used to evaluate several extensive index measurements for doped silicon found in the literature.

© 2006 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(260.2030) Physical optics : Dispersion
(260.3090) Physical optics : Infrared, far

ToC Category:
Physical Optics

History
Original Manuscript: June 10, 2005
Manuscript Accepted: July 31, 2005

Citation
William Karstens, David C. Bobela, and D. Y. Smith, "Impurity and free-carrier effects on the far-infrared dispersion spectrum of silicon," J. Opt. Soc. Am. A 23, 723-729 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-3-723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Seitz and N. G. Einspruch, Electronic Genie: The Tangled History of Silicon (U. Illinois Press, 1998).
  2. M. Becker and H. Y. Fan, 'Optical properties of semiconductors. III. Infra-red transmission of silicon,' Phys. Rev. 76, 1531-1532 (1949). [CrossRef]
  3. H. B. Briggs, 'Infrared absorption in silicon,' Phys. Rev. 77, 727-728 (1950). [CrossRef]
  4. H. Y Fan and M. Becker, 'Infra-red optical properties of silicon and germanium,' in Semiconducting Materials, H.K.Henisch, ed. (Butterworth, 1951), pp. 132-147.
  5. A. H. Kahn, 'Theory of the infrared absorption of carriers in germanium and silicon,' Phys. Rev. 97, 1647-1652 (1955). [CrossRef]
  6. H. Y. Fan, 'Infra-red absorption in semiconductors,' Rep. Prog. Phys. 19, 107-155 (1956). [CrossRef]
  7. W. G. Spitzer and H. Y. Fan, 'Infrared absorption in n-type silicon,' Phys. Rev. 108, 268-271 (1957). [CrossRef]
  8. V. S. Vavilov, 'The absorption of free charge carriers by infrared radiation in silicon,' Sov. Phys. Solid State 2, 346-349 (1960).
  9. Yu. I. Ukhanov, 'Faraday effect in silicon in the infrared region of wavelengths,' Sov. Phys. Solid State 4, 2010-2013 (1963).
  10. T. Staflin, 'Infra-red absorption due to hole transitions involving the split-off valence-band in silicon,' Phys. Lett. 19, 84-85 (1965). [CrossRef]
  11. K. Sato, 'Contribution of surface electrons to the infrared optical properties of silicon,' J. Phys. Soc. Jpn. 27, 89-95 (1969). [CrossRef]
  12. P. A. Schumann, Jr., W. A. Keenan, A. H. Tong, H. H. Gegenwarth, and C. P. Schneider, 'Silicon optical constants in the infrared,' J. Electrochem. Soc. 118, 145-148 (1971). [CrossRef]
  13. L. M. Lambert, 'Free carrier reflectivity in optically homogeneous silicon,' Phys. Status Solidi A 11, 461-467 (1972). [CrossRef]
  14. D. F. Edwards and E. Ochoa, 'Infrared refractive index of silicon,' Appl. Opt. 19, 4130-4131 (1980). [CrossRef] [PubMed]
  15. H. Engstrom, 'Infrared reflectivity and transmissivity of boron-implanted, laser-annealed silicon,' J. Appl. Phys. 51, 5245-5249 (1980). [CrossRef]
  16. R. T. Kinasewitz and B. Senitzky, 'Investigation of the complex permittivity of n-type silicon at millimeter wavelengths,' J. Appl. Phys. 54, 3394-3398 (1983). [CrossRef]
  17. J. Humlícek and K. Vojtechovský, 'Infrared optical constants of intrinsic silicon,' Phys. Status Solidi A 92, 249-255 (1985). [CrossRef]
  18. J. Humlícek and K. Vojtechovský, 'Infrared optical constants of n-type silicon,' Czech. J. Phys., Sect. B 38, 1033-1049 (1988). [CrossRef]
  19. T. Ohba and Shun-ichi Ikawa, 'Far-infrared absorption of silicon crystals,' J. Appl. Phys. 64, 4141-4143 (1988). [CrossRef]
  20. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, 'Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,' J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  21. K.-L. Barth and F. Keilmann, 'Far-infrared ellipsometer,' Rev. Sci. Instrum. 64, 870-875 (1993). [CrossRef]
  22. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, 'Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,' J. Appl. Phys. 90, 837-842 (2001). [CrossRef]
  23. P. Drude, 'Electronic theory of metals I,' Ann. Phys. 1, 566-613 (1900). [CrossRef]
  24. C. Zener, 'Remarkable optical properties of the alkali metals,' Nature 132, 968 (1933). [CrossRef]
  25. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1972).
  26. F. Stern, 'Elementary theory of the optical properties of solids,' in Solid State Physics, Vol. 15, F.Seitz and D.Turnbull, eds. (Academic, 1963), pp. 299-408. [CrossRef]
  27. P. A Schumann, Jr., W. A. Keenan, A. H. Tong, H. H. Gegenwarth, and C. P. Schneider, 'Optical constants of silicon in the wavelength range 2.5 to 40 µm,' IBM Tech. Rep. TR 22.1008 (IBM, 1970).
  28. M. Auslender and S. Hava, 'Doped n-type silicon,' in Handbook of Optical Constants of Solids, Vol. 3, E.D.Palik, ed. (Academic, 1997), pp. 155-186.
  29. T. S. Moss, Optical Properties of Semiconductors (Butterworth, 1959).
  30. D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors (Pergamon, 1968).
  31. W. Primak, 'Refractive index of silicon,' Appl. Opt. 10, 759-763 (1971). [CrossRef] [PubMed]
  32. C. D. Salzberg and J. J. Villa, 'Infrared refractive indices of silicon, germanium, and modified selenium glass,' J. Opt. Soc. Am. 47, 244-246 (1957). [CrossRef]
  33. D. E. Aspnes and A. A. Studna, 'Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,' Phys. Rev. B 27, 985-1009 (1983). [CrossRef]
  34. M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, 2nd ed., Springer Series on Solid-State Science (Springer, 1989). [CrossRef]
  35. M. Cardona, W. Paul, and H. Brooks, 'Dielectric constant of germanium and silicon as a function of volume,' J. Phys. Chem. Solids 8, 204-206 (1959). [CrossRef]
  36. H. H. Li, 'Refractive index of silicon and germanium and its wavelength and temperature derivatives,' J. Phys. Chem. Ref. Data 9, 561-658 (1980). [CrossRef]
  37. D. F. Edwards, 'Silicon (Si),' in Handbook of Optical Constants of Solids, Vol. 1, E.D.Palik, ed. (Academic, 1985), pp. 547-569.
  38. D. E. Aspnes, 'Optical functions,' in Properties of Silicon (Inspec, Institution of Electrical Engineers London, 1988), Chap. 2, pp. 61-79.
  39. D. E. Aspnes, 'Optical properties,' in Properties of Crystalline Silicon, R.Hull, ed. (Inspec, Institution of Electrical Engineers London, 1999), Chap. 12, pp. 679-695.
  40. M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, 'Superconvergence and sum rules for the optical constants,' Phys. Rev. B 6, 4502-4509 (1972). [CrossRef]
  41. E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, 'Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum,' Phys. Rev. B 22, 1612-1628 (1980). [CrossRef]
  42. D. Y. Smith, M. Inokuti, and W. Karstens, 'A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors,' J. Phys.: Condens. Matter 13, 3883-3893 (2001). [CrossRef]
  43. D. Y. Smith, M. Inokuti, and W. Karstens, 'Photoresponse of condensed matter over the entire range of excitation energies: analysis of silicon,' Phys. Essays 13, 465-472 (2000). [CrossRef]
  44. A. L. Cauchy, 'Sur la refraction et la réflexion de la lumière,' Bull. Sci. Math. 14, 6-10 (1830) (LC Control No. 06004562).
  45. A. L. Cauchy, Mémoire sur la dispersion de la lumière (Calve, Prague, 1836).
  46. D. Y. Smith, 'Comments on the dispersion relations for the complex refractive index of circularly and elliptically polarized light,' J. Opt. Soc. Am. 66, 454-460 (1976). [CrossRef]
  47. R. F. Potter, 'Germanium (Ge),' in Handbook of Optical Constants of Solids, Vol. 1, E.D.Palik, ed. (Academic, 1985), pp. 465-478.
  48. R. Kingslake, Lens Design Fundamentals (Academic, 1978).
  49. E. V. Loewenstein, D. R. Smith, and R. L. Morgan, 'Optical constants for far infrared materials I: Crystalline solids,' Appl. Opt. 12, 398-406 (1973). [CrossRef] [PubMed]
  50. C. M. Randall and R. D. Rawcliffe, 'Refractive indices of germanium, silicon, and fused quartz in the far infrared,' Appl. Opt. 6, 1889-1895 (1967). [CrossRef] [PubMed]
  51. D. Y. Smith and E. Shiles, 'Finite-energy f-sum rules for valence electrons,' Phys. Rev. B 17, 4689-4694 (1978). See Eq. (14), but note that on the second line following Eq. (18), omegab should be replaced by ϵb. [CrossRef]
  52. R. N. Dexter, H. J. Zeiger, and B. Lax, 'Cyclotron resonance experiments in silicon and germanium,' Phys. Rev. 104, 637-644 (1956). [CrossRef]
  53. W. G. Spitzer and H. Y. Fan, 'Determination of optical constants and carrier effective mass of semiconductors,' Phys. Rev. 106, 882-890 (1957). [CrossRef]
  54. L. E. Howarth and J. F. Gilbert, 'Determination of free-electron effective mass of n-type silicon,' J. Appl. Phys. 34, 236-237, (1963). [CrossRef]
  55. E. Barta, 'Determination of effective mass values by a Kramers-Kronig analysis for variously doped silicon crystals,' Infrared Phys. 17, 111-119 (1977). [CrossRef]
  56. E. Barta, 'Optical constants of various heavily doped p- and n-type silicon crystals by Kramers-Kronig analysis,' Infrared Phys. 17, 319-329 (1977). [CrossRef]
  57. A. Beer, 'Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,' Ann. Phys. Chem. 86, 78-88 (1852). [CrossRef]
  58. A. Beer, Grundriss des Photometrischen Calcüles (Vieweg, Braunschweig, 1854).
  59. F. Shimura, Oxygen in Silicon (Academic, 1994).
  60. W. Sellmeier, 'Zur Erklärung der abnormen Farbenfolge in Spectrum einiger Substanzen,' Ann. Phys. Chem. 143, 272-282 (1871). [CrossRef]
  61. W. Sellmeier, 'Über die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien' (part 1), Ann. Phys. Chem. 145, 399-421 (1872);W. Sellmeier, 'Über die durch die Aetherschwingungen erregten Mitschwingungen der Köpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien' (part 2), Ann. Phys. Chem. 145, 520-549 (1872); W. Sellmeier, 'Über die durch die Aetherschwingungen erregten Mitschwingungen der Köpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien'(part 3), Ann. Phys. Chem. 147, 386-403 (1872); W. Sellmeier, 'Über die durch die Aetherschwingungen erregten Mitschwingungen der Köpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien'(part 4), Ann. Phys. Chem. 147, 525-554 (1872). [CrossRef]
  62. H. A. Lorentz, The Theory of Electrons (Teubner, Leipzig, 1909; Stechert, New York, 1923).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited