OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 3 — Mar. 1, 2006
  • pp: 741–746

Transformation equation in three-dimensional photoelasticity

Leo Ainola and Hillar Aben  »View Author Affiliations

JOSA A, Vol. 23, Issue 3, pp. 741-746 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (88 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical phenomena that occur when polarized light passes through an inhomogeneous birefringent medium are complicated, especially when the principal directions of the dielectric tensor rotate on the light ray. This case is typical in three-dimensional photoelasticity, in particular in integrated photoelasticity by stress analysis on the basis of measured polarization transformations. Analysis of polarization transformations in integrated photoelasticity has been based primarily on a system of two first-order differential equations. Using a transformed coordinate in the direction of light propagation, we have derived a single fourth-order differential equation of three-dimensional photoelasticity. For the case of uniform rotation of the principal directions we have obtained an analytical solution.

© 2006 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: July 1, 2005
Manuscript Accepted: August 9, 2005

Leo Ainola and Hillar Aben, "Transformation equation in three-dimensional photoelasticity," J. Opt. Soc. Am. A 23, 741-746 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, Oxford, 1971).
  2. R. D. Mindlin and L. E. Goodman, 'The optical equations of three-dimensional photoelasticity,' J. Appl. Phys. 20, 89-95 (1949). [CrossRef]
  3. R. C. O'Rourke, 'Three-dimensional photoelasticity,' J. Appl. Phys. 22, 872-878 (1951). [CrossRef]
  4. S. E. Segre, 'New formalism for the analysis of polarization evolution for radiation in a weakly nonuniform, fully anisotropic medium: a magnetized plasma,' J. Opt. Soc. Am. A 18, 2601-2606 (2001). [CrossRef]
  5. L. C. Meira-Belo and U. A. Leitão, 'Singular polarization eigenstates in anisotropic stratified structures,' Appl. Opt. 39, 2695-2704 (2000). [CrossRef]
  6. I. Moreno, C. R. Fernándes-Pousa, and J. A. Davis, 'Polarization eigenvectors for reflective twisted nematic liquid crystal displays,' Opt. Eng. (Bellingham) 40, 2220-2226 (2001). [CrossRef]
  7. H. Aben, 'Optical phenomena in photoelastic models by the rotation of principal axes,' Exp. Mech. 6, 13-22 (1966). [CrossRef]
  8. H. Aben, Integrated Photoelasticity (McGraw-Hill, 1979).
  9. H. K. Aben, J. I. Josepson, and K.-J. Kell, 'The case of weak birefringence in integrated photoelasticity,' Opt. Lasers Eng. 11, 145-157 (1989). [CrossRef]
  10. H. Aben and C. Guillemet, Photoelasticity of Glass (Springer-Verlag, 1993).
  11. H. Aben, L. Ainola, and J. Anton, 'Integrated photoelasticity for nondestructive residual stress measurement in glass,' Opt. Lasers Eng. 33, 49-64 (2000). [CrossRef]
  12. H. Aben, J. Anton, and A. Errapart, 'Modern photoelastic technology for residual stress measurement in glass,' Verre (Versailles) 9, 44-49 (2003).
  13. A. A. Fuki, Yu. A. Kravtsov, and O. N. Naida, Geometrical Optics of Weakly Anisotropic Media (Gordon & Breach, 1998).
  14. L. Ainola and H. Aben, 'Duality in optical theory of twisted birefringent media,' J. Opt. Soc. Am. A 16, 2545-2549 (1999). [CrossRef]
  15. L. Ainola and H. Aben, 'Transformation equations in polarization optics of inhomogeneous birefringent media,' J. Opt. Soc. Am. A 18, 2164-2170 (2001). [CrossRef]
  16. L. Ainola and H. Aben, 'Principal formulas of integrated photoelasticity in terms of characteristic parameters,' J. Opt. Soc. Am. A 22, 1181-1186 (2005). [CrossRef]
  17. H. Aben and J. Josepson, 'Strange interference blots in the interferometry of inhomogeneous birefringent objects,' Appl. Opt. 36, 7172-7179 (1997). [CrossRef]
  18. H. Aben and L. Ainola, 'Interference blots and fringe dislocations in optics of twisted birefringent media,' J. Opt. Soc. Am. A 15, 2404-2411 (1998). [CrossRef]
  19. S. Bhagavantam and T. Venkatarayudu, Theory of Groups and Application to Physical Problems (Academic, 1969).
  20. H. Poincaré, Théorie mathématique de la lumière, II (Carré et Naud, Paris, 1892).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited