Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient deconvolution of noisy periodic interference signals

Not Accessible

Your library or personal account may give you access

Abstract

The interference signal formed by combining two coherent light beams carries information on the path difference between the beams. When the path difference is a periodic function of time, as, for example, when one beam is reflected from a vibrating surface and the other from a fixed surface, the interference signal is periodic with the same period as the vibrating surface. Bessel functions provide an elegant and efficient means for deconvoluting such periodic interference signals, thus making it possible to obtain the displacement of the moving surface with nanometer resolution. Here we describe the mathematical basis for the signal deconvolution and employ this technique to obtain the amplitude of miniature capillary waves on water as a test case.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Reconstruction of long-period fiber gratings from their core-to-core transmission function

Amir Rosenthal and Moshe Horowitz
J. Opt. Soc. Am. A 23(1) 57-68 (2006)

Phase retrieval from noisy data based on minimization of penalized I-divergence

Kerkil Choi and Aaron D. Lanterman
J. Opt. Soc. Am. A 24(1) 34-49 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.