OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 5 — May. 1, 2006
  • pp: 1027–1037

Inverse scattering for optical coherence tomography

Tyler S. Ralston, Daniel L. Marks, P. Scott Carney, and Stephen A. Boppart  »View Author Affiliations

JOSA A, Vol. 23, Issue 5, pp. 1027-1037 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (667 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Inverse scattering theory for optical coherence tomography (OCT) is developed. The results are used to produce algorithms to resolve three-dimensional object structure, taking into account the finite beam width, diffraction, and defocusing effects. The resolution normally achieved only in the focal plane of the OCT system is shown to be available for all illuminated depths in the object without moving the focal plane. Spatially invariant resolution is verified with numerical simulations and indicates an improvement of the high-resolution cross-sectional imaging capabilities of OCT.

© 2006 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(100.6950) Image processing : Tomographic image processing
(110.1650) Imaging systems : Coherence imaging
(110.6880) Imaging systems : Three-dimensional image acquisition
(110.6960) Imaging systems : Tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Imaging Systems

Original Manuscript: July 15, 2005
Revised Manuscript: October 19, 2005
Manuscript Accepted: October 22, 2005

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Tyler S. Ralston, Daniel L. Marks, P. Scott Carney, and Stephen A. Boppart, "Inverse scattering for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. S. Cooper, A. F. Wons, and A. P. Gaskell, "High resolution synthetic aperture radar using a multiple sub-band technique," in IEEE Proceedings of Radar Systems, Conf. Publ. 449 (IEEE Press, 1997), pp. 263-267.
  2. R. Lanari, S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino, "New approach for hybrid strip-map/spotlight SAR data focusing," IEE Proc., Radar Sonar Navig. 148, 363-372 (2001). [CrossRef]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  4. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  5. B.E.Bouma and J.G.Tearney, eds., The Handbook of Optical Coherence Tomography (Marcel Dekker, 2001).
  6. M. E. Brezinski, G. J. Tearney, S. A. Boppart, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics," J. Surg. Res. 71, 32-40 (1997). [CrossRef] [PubMed]
  7. S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, "Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer," Breast Cancer Res. Treat. 84, 85-97 (2004). [CrossRef] [PubMed]
  8. L. K. Jensen, L. Thrane, P. E. Andersen, A. Tycho, F. Pedersen, S. Andersson-Engels, N. Bendsoe, S. Svanberg, and K. Svanberg, "Optical coherence tomography in clinical examinations of nonpigmented skin malignancies," in Optical Coherence Tomography and Coherence Techniques, W.Drexler, ed., Proc. SPIE 5140, 160-167 (2003).
  9. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  10. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, "High-resolution optical coherence tomography over a large depth range with an axicon lens," Opt. Lett. 27, 243-245 (2002). [CrossRef]
  11. Y. Wang, Y. Zhao, J. S. Nelson, and Z. Chen, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003). [CrossRef] [PubMed]
  12. M. J. Cobb, X. Liu, and X. Li, "Continuous focus tracking for real-time optical coherence tomography," Opt. Lett. 30, 1680-1682 (2005). [CrossRef] [PubMed]
  13. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, "Image enhancement in optical coherence tomography using deconvolution," Electron. Lett. 33, 1365-1367 (1997). [CrossRef]
  14. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003). [CrossRef] [PubMed]
  15. T. Blu, H. Bay, and M. Unser, "A new high-resolution processing method for the deconvolution of optical coherence tomography signals," presented at the IEEE International Symposium on Biomedical Imaging, Washington, D.C., July 7-11, 2002.
  16. O. Bruno and J. Chaubell, "One-dimensional inverse scattering problem for optical coherence tomography," Inverse Probl. 21, 499-524 (2005). [CrossRef]
  17. O. Bruno and J. Chaubell, "Inverse scattering problem for optical coherence tomography," Opt. Lett. 28, 2049-2051 (2003). [CrossRef] [PubMed]
  18. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, "Correction of distortions in optical coherence tomography imaging of the eye," Phys. Med. Biol. 49, 1277-1294 (2004). [CrossRef] [PubMed]
  19. Y. Feng and R. K. Wang, "Theoretical model of optical coherence tomography for system optimization and characterization," J. Opt. Soc. Am. A 20, 1792-1803 (2003). [CrossRef]
  20. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  21. J. F. deBoer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tierney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef]
  22. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994). [CrossRef] [PubMed]
  23. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995), p. 1192.
  24. R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley-Interscience, 1989), pp. 142-147.
  25. P. C. Hansent, "Numerical tools for analysis and solution of Fredholm integral equations of the first kind," Inverse Probl. 8, 849-872 (1992). [CrossRef]
  26. C. Pozrikidis, Numerical Computation in Science and Engineering (Oxford U. Press, 1998), pp. 406-408.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited