OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 6 — Jun. 1, 2006
  • pp: 1369–1374

Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach

Vitaliy N. Pustovit and Tigran V. Shahbazyan  »View Author Affiliations


JOSA A, Vol. 23, Issue 6, pp. 1369-1374 (2006)
http://dx.doi.org/10.1364/JOSAA.23.001369


View Full Text Article

Enhanced HTML    Acrobat PDF (124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.

© 2006 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5860) Scattering : Scattering, Raman

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 24, 2005
Revised Manuscript: December 6, 2005
Manuscript Accepted: December 7, 2005

Citation
Vitaliy N. Pustovit and Tigran V. Shahbazyan, "Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach," J. Opt. Soc. Am. A 23, 1369-1374 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-6-1369


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischman, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett. 26, 163-166 (1974). [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. Interfacial Electrochem. 84, 1-20 (1977). [CrossRef]
  3. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  5. M. Moskovits, "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals," J. Chem. Phys. 69, 4159-4161 (1978). [CrossRef]
  6. M. Kerker, D.-S. Wang, and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata," Appl. Opt. 19, 4159-4174 (1980). [PubMed]
  7. J. Gersten and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces," J. Chem. Phys. 73, 3023-3037 (1980). [CrossRef]
  8. For a recent review, see G. S. Schatz and R. P. Van Duyne, in Handbook of Vibrational Spectroscopy, J.M.Chalmers and P.R.Griffiths, eds. (Wiley, 2002), p. 1.
  9. B. N. J. Persson, "On the theory of surface-enhanced Raman scattering," Chem. Phys. Lett. 82, 561-565 (1981). [CrossRef]
  10. F. J. Adrian, "Charge transfer effects in surface-enhanced Raman scattering," J. Chem. Phys. 77, 5302-5314 (1982). [CrossRef]
  11. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  12. A. Otto, I. Mrozek, H. Grabhorn, and W. J. Akermann, "Surface-enhanced Raman scattering," J. Phys.: Condens. Matter 4, 1143-1212 (1992), and references therein. [CrossRef]
  13. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. (Washington, D.C.) 99, 2957-2976 (1999), and references therein. [CrossRef]
  14. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999). [CrossRef]
  15. A. M. Michaels, J. Jiang, and L. E. Brus, "Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules," J. Phys. Chem. B 104, 11965-11971 (2000). [CrossRef]
  16. M. Moskovits, L. Tay, J. Yang, and T. Haslett, "SERS and the single molecule," Top. Appl. Phys. 82, 215-226 (2002).
  17. Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2004). [CrossRef]
  18. M. I. Stockman, L. N. Pandey, and T. F. George, "Inhomogeneous localization of polar eigenmodes in fractals," Phys. Rev. B 53, 2183-2186 (1996). [CrossRef]
  19. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites. I. Linear optical properties," Phys. Rev. B 53, 2425-2436 (1996). [CrossRef]
  20. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999). [CrossRef]
  21. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  22. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  23. H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004). [CrossRef]
  24. B. Nikoobakht, J. Wang, and M. A. El-Sayed, "Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition," Chem. Phys. Lett. 366, 17-23 (2002). [CrossRef]
  25. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  26. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, "Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates," J. Chem. Phys. 111, 4729-4735 (1999). [CrossRef]
  27. J.-Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702-4705 (1995). [CrossRef] [PubMed]
  28. A. Kawabata and R. Kubo, "Electronic properties of fine metallic particles. II. Plasma resonance absorption," J. Phys. Soc. Jpn. 21, 1765-1772 (1966). [CrossRef]
  29. See, e.g., U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  30. L. Peyser-Capadona, J. Zheng, J. I. Gonzlez, T.-H. Lee, S. A. Patel, and R. M. Dickson, "Nanoparticle-free single molecule anti-Stokes Raman spectroscopy," Phys. Rev. Lett. 94, 058301 (2005). [CrossRef] [PubMed]
  31. B. N. J. Persson and E. Zaremba, "Electron-hole pair production at metal surfaces," Phys. Rev. B 31, 1863-1872 (1985). [CrossRef]
  32. A. Liebsch, "Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals," Phys. Rev. B 48, 11317-11328 (1993). [CrossRef]
  33. V. V. Kresin, "Collective resonances in silver clusters: role of d electrons and the polarization-free surface layer," Phys. Rev. B 51, 1844-1849 (1995). [CrossRef]
  34. A. Liebsch and W. L. Schaich, "Influence of a polarizable medium on the nonlocal optical response of a metal surface," Phys. Rev. B 52, 14219-14234 (1995). [CrossRef]
  35. C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, "Size-dependent electron-electron interactions in metal nanoparticles," Phys. Rev. Lett. 85, 2200-2203 (2000). [CrossRef] [PubMed]
  36. C. Lopez-Bastidas, J. A. Maytorena, and A. Liebsch, "Hot-electron dynamics at noble metal surfaces," Phys. Rev. B 65, 035417 (2002). [CrossRef]
  37. N. Nilius, N. Ernst, and H.-J. Freund, "Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope," Phys. Rev. Lett. 84, 3994-3997 (2000). [CrossRef] [PubMed]
  38. A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, "Surface plasmon oscillations in layer metal particles," Z. Phys. B 27, 321-324 (1977). [CrossRef]
  39. W. Ekardt, "Size-dependent photoabsorption and photoemission of small metal particles," Phys. Rev. B 31, 6360-6370 (1985). [CrossRef]
  40. V. N. Pustovit and T. V. Shahbazyan, "Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles," Phys. Rev. B 73, 085408 (2006). [CrossRef]
  41. See, e.g., D. A. Long, The Raman Effect (Wiley, 2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited